Polymer(Korea), Vol.26, No.1, 88-97, January, 2002
Ortho-cresol Novolac 형 에폭시의 화학레올로지 특성에 미치는 아민 개질제의 영향
Effect of Aminosiloxane Modifier on Chemorheological Properties of Ortho-cresol Novolac Epoxy
E-mail:
초록
ortho-cresol novolac형 에폭시/페놀 경화제/triphenylphosphine 수지 시스템의 화학 레올로지 특성에 미치는 아민 실록산 개질제의 영향을 검토하였다. DSC 측정으로부터 아민 개질제에 의해 경화 속도와 전환량이 증가하였으며 유리전이온도의 증가도 관찰할 수 있었다. 또한, 저장 탄성률과 손실 탄성률의 교차점으로부터 구한 겔화 시간 및 임계 전환량의 감소를 확인할 수 있었다. 이것으로부터 등온 경화반응이 빠르게 진행됨으로써 점도가 상승하는 것을 알 수 있었다. 전환량의 함수로 얻어진 유리전이온도와 측정된 점도로부터 modified WLF 방정식에서의 C1 및 C2를 온도 함수로써 나타낼 수 있었으며, 유리전이온도와 C1 및 C2를 modified WLF 방정식에 적용함으로써 등온 경화반응에 따른 점도변화를 정확히 예측할 수 있었다.
The effect of aminosiloxane modifier on the chemorheological properties of ortho-cresol novolac epoxy/phenol novolac/triphenylphosphine resin system was investigated at different isothermal curing temperatures. By adding the aminosiloxane to the resin system, not only conversion rate and conversion were increased but also glass transition temperature was promoted. Critical conversion and gelation time obtained at the crossover point between storage and loss moduli were reduced and thus the viscosity was increased by the aminosiloxane. C1 and C2 in the WLF equation calculated from the glass transition temperature as a function of conversion and measured viscosity were found to vary with the curing temperature. By applying the change of glass transition temperature with conversion, C1 and C2 to WLF equation, it was possible to predict accurately the viscosity change with isothermal curing reaction.
Keywords:chemorheology;curing reaction;ortho-cresol novolac epoxy;aminosiloxane;modified WLF equation;glass transition temperature
- "Microelectronics Packaging Handbook," eds. by Rao R. Tummala and Eugene J. Rymaszewski, chap 8, Van Nostrand Reinhold, New York, 1989 (1989)
- Yoon HG, Moon KS, Kim JM, Polym. Abstracts, 22(1), 2L5-1 (1997)
- Xue G, J. Chem. Soc.-Faraday Trans., 87, 1229 (1991)
- Yoon HG, Moon TJ, "Analysis of Adhesive Mechanism between EMC and Leadframe, and Development of base Resin for Improved Adhesion," Final Report on Commision of Cheil Industries Inc., 1996 (1996)
- Hou TH, Huang JYZ, Hinkley JA, J. Appl. Polym. Sci., 41, 819 (1990)
- Halley PJ, Mackay ME, Polym. Eng. Sci., 36(5), 593 (1996)
- Mijovic J, Lee CH, J. Appl. Polym. Sci., 37, 889 (1989)
- Prime RB, "Thermal Characteristics of Polymeric Materials," ed. by E. Turi, chap. 5, Academic Press, New York, 1981 (1981)
- Banthia AK, McGrath JE, ACS Polym. Prepr. Div. Polym. Chem., 20, 629 (1979)
- Yoon HG, Han S, Kim WG, Suh KS, Polym.(Korea), 23(4), 507 (1999)
- Sorokin MF, Shode LG, Zh. Org. Khim., 2, 1447 (1966)
- Sorokin MF, Shode LG, Zh. Org. Khim., 2, 1452 (1966)
- Kamal MR, Polym. Eng. Sci., 14, 23 (1974)
- Winter HH, Polym. Eng. Sci., 27, 1698 (1987)
- Flory PJ, "Principles of Polymer Chemistry," Chap. 9, Cornell University Press, New York, 1953 (1953)
- Stockmayer WH, J. Polym. Sci., 9, 69 (1952)
- Simon SL, Gillham JK, J. Appl. Polym. Sci., 46, 1245 (1992)
- Hale A, Macosko CW, Bair HE, Macromolecules, 24, 2610 (1989)
- Lipshitz SD, Macosco CW, Polym. Eng. Sci., 16, 803 (1976)