화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.11, No.6, 687-692, October, 2000
Ni-Mo/γ-Al2O3 촉매를 사용한 1,1,2-trichloroethane의 수첨탈연소 반응에서 전처리 조건과 첨가된 Ni의 영향
Effect of Pretreatment Condition and Added Ni on Catalyst Performance of Ni-Mo/γ-Al2O3 Catalysts in the Hydrodechlorination of 1,1,2-trichloroethane
E-mail:
초록
수소화 촉매인 Ni-Mo/γ-Al2O3를 이용하여 이염화에탄 제조공정의 주요 부산물인 1,1,2-삼염화에탄을 에틸렌으로 변환시키기 위한 기상 수첨탈염소 반응을 상압, 300 ℃에서 수행하였다. 촉매 제조시 주요 변수로 작용하는 소성온도, Ni의 함량 및 촉매의 전처리 조건에 따른 반응성을 조사하였다. 황전처리된 Ni-Mo/γ-Al2O3는 MoS2 활성점에 의해 높은 활성을 나타냄을 확인하였다. Ni의 함량이 증가함에 따라 전환율과 선택도가 증가하였으며, 첨가된 Ni은 주촉매로서 독립된 활성을 나타내었다. 소성 온도가 400-450 ℃ 범위에서 에틸렌 수율이 가장 좋았으며, 반응 중에 발생한 HCl은 촉매 비활성화의 주된 요인이었다.
The gas phase hydrodechlorination of 1,1,2-trichloroethane (TCEA), which is a major chlorinated organic waste produced in the EDC (Ethylene dichloride) process was carried out to form ethylene over Ni-Mo/γ-Al2O3 catalysts at 300 ℃ and atmospheric pressure. The effects of calcination temperature, Ni loading and pretreatment conditions on catalyst performance of Ni-Mo/-Al2O3 were investigated. Sulfidation of Ni-Mo/γ-Al2O3 showed high activity at the active site of MoS2. Conversion and ethylene selectivity increased with the Ni loading, and ethylene yield exhibited the maximum at a calcination temperature of 450 ℃. The added Ni played an important role in the hydrodechlorination of TCEA. The HCl decreased catalytic activity and hydrogenation ability of catalysts.
  1. Cisneros MD, Rougue B, U.S. Patent, 5,430,215 (1995)
  2. Harley JD, Holbrook MT, Smith D, Cisneros MD, U.S. Patent, 5,453,557 (1995)
  3. Ito LN, Jones ME, Bare SR, U.S. Patent, 5,637,548 (1997)
  4. Stach J, Pekarek V, Endrst R, Hetflejs J, Chemosphere, 39, 2391 (1999) 
  5. Coute N, Ortego JD, Richardson JT, Twigg MV, Appl. Catal. B: Environ., 19(3-4), 175 (1998) 
  6. Trillas M, Peral J, Domenech X, J. Chem. Technol. Biotechnol., 67(3), 237 (1996) 
  7. Gampine A, Eyman DP, J. Catal., 179(1), 315 (1998) 
  8. Coq B, J. Mol. Catal., 71, 317 (1992) 
  9. Coq B, Ferret G, J. Catal., 101, 434 (1986) 
  10. Takita Y, Tamaha H, Hashida M, Ishihara T, Chem. Lett., 715 (1990) 
  11. Kuznetsova NN, Lokteva ES, Lunin VV, Yudina SL, J. Catal., 131, 412 (1991) 
  12. Lapierre RB, Wu D, Weiss AH, J. Catal., 52, 59 (1978) 
  13. Getty EE, Petrosius SC, Drago RS, J. Mol. Catal., 67, 127 (1991) 
  14. Suzdorf AR, Morozov SV, Anshits NN, Tsiganova SI, Anshits AG, Catal. Lett., 29(1-2), 49 (1994) 
  15. Choi YH, Lee WY, Catal. Lett., accepted (2000)
  16. Kim DI, Allen DT, Ind. Eng. Chem. Res., 36(8), 3019 (1997) 
  17. Park YC, Ph.D. Dissertation, Seoul National University, Seoul, Korea (1996)
  18. Dufresene PP, Grimblot J, Bonnelle JP, J. Phys. Chem., 85, 2344 (1985) 
  19. Richardson JT, Ind. Eng. Chem. Fundam., 3, 154 (1964) 
  20. Yang SH, Satterfield CN, J. Catal., 81, 168 (1983) 
  21. Yang SH, Satterfield CN, Ind. Eng. Chem., 23, 20 (1984) 
  22. Coq B, Cognion JM, Figueras F, Tournigant D, J. Catal., 141, 21 (1993) 
  23. Tavoularis G, Keane MA, J. Mol. Catal. A-Chem., 142, 187 (1999)