화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.3, 409-417, May, 2022
전도성 고분자를 첨가제로 사용한 광전기화학 물 분해용 n-type 광양극
N-type Photoanodes for Photoelectrochemical Water Splitting Using a Newly Synthesized Conjugated Polymer as an Additive
E-mail:,
초록
광전기화학 물 분해 시스템에서 사용하는 무기물질을 전도성 고분자로 직접 대체하여 유기광양극을 제조한 연구는 많이 진행되지 않았다. 따라서 본 연구는 광전류밀도를 증가시키기 위하여 n-type 유기반도체인 N2200과 신 규 합성한 전도성 고분자인 PCFCS를 첨가제로 사용한 광양극을 제작하였다. 선형주사전위법으로 광전류밀도를 측 정한 결과 PCFCS 첨가제를 포함하지 않은 광양극의 광전류밀도는 1.12 μA/cm2였다. 5.0 μg의 PCFCS를 N2200에 첨가제로 사용하였을 때 광전류밀도는 1.82 μA/cm2로 62.5% 증가한 값을 확인하였다.
Replacing inorganic semiconductors with organic semiconductors for photoelectrochemical water-splitting (PEC-WS) has been challenging. In this study, a photoanode was fabricated by both n-type organic semiconductor, poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)} (N2200) and a newly synthesized conjugated polymer, poly(4-(4,4-dihexadecyl-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-7-(4,4-dihexadecyl-6-(thiophen-2-yl)-4H-cyclopenta[1,2-b:5,4-b']dithiophen-2-yl)-5-fluorobenzo[c][1,2,5]thiadiazole) (PCFCS) as an additive and it has enhanced photocurrent density. Linear sweep voltammetry revealed that the addition of PCFCS (5.0 μg) increased the photocurrent density up to 62.5% (1.12 to 1.82 μA/cm2).
  1. Perera F, J. Environ. Res. Public Heal., 15, 1 (2018)
  2. Bang GW, J. Korean Soc. Jungshin Sci., 13, 73 (2009)
  3. Martins F, Felgueiras C, Smitkova M, Caetano N, Energies, 12, 694 (2019)
  4. Tarasco JM, Gratzel M, Materials for Sustainable Energy; Dusastre V, Ed. Nature Publishing Croup: Singapole, 2011.
  5. Ahmed M, Dincer IA, Int. J. Hydrog. Energy, 44, 2474 (2019)
  6. Jang YJ, Lee JS, ChemSusChem, 12, 1835 (2019)
  7. Al-Resayes SI, Chen B, Fu L, Fu L, Gao L, Ji L, Li C, Liu X, Liu Z, Nehdi IA, Soltani S, Strunk J, Uchino K, Metal Oxides in Energy Technologies: Y. Wu; Amsterdam, Netherlands; 2018.
  8. Yao T, An X, Han H, Chen JQ, Li C, Adv. Energy Mater, 8, 1800210 (2018)
  9. Steier L, Holliday SA, J. Mater. Chem. A, 6, 21809 (2018)
  10. Barroso M, Pendlebury SR, Cowan AJ, Durrant JR, Chem. Sci., 4, 2724 (2013)
  11. Ahn HJ, Yoon KY, Kwak MJ, Jang JHA, Angew. Chem.-Int. Edit., 55, 9922 (2016)
  12. Tsao HN, Cho D, Andreasen JW, Rouhanipour A, Breiby DW, Pisula W, Müllen K, Adv. Mater., 21, 209 (2009)
  13. Bai Y, Hippalgaonkar K, Sprick RS, J. Mater. Chem. A, 9, 16222 (2021)
  14. Dai C, Pan Y, Liu B, Adv. Energy Mater., 10, 2002474 (2020)
  15. Namsheer K, Rout CS, RSC Adv., 10, 5659 (2021)
  16. Günes S, Neugebauer H, Sariciftci NS, Chem. Rev., 107, 1324 (2007)
  17. Yang J, Zhao Z, Wang S, Guo Y, Liu Y, Chem., 12, 2748 (2018)
  18. Anthony JE, Facchetti A, Heeney M, Marder SR, Zhan X, Adv. Mater., 22, 3876 (2010)
  19. Quinn JTE, Zhu J, Li X, Wang J, Li Y, J. Mater. Chem. C, 5, 8654 (2017)
  20. Zhao X, Zhan X, Chem. Soc. Rev., 40, 3728 (2011)
  21. Griggs S, Marks A, Bristow H, McCulloch I, J. Mater. Chem. C, 9, 8099 (2021)
  22. Jia H, Lei T, J. Mater. Chem. C, 7, 12809 (2019)
  23. Wang S, Sun H, Erdmann T, Wang G, Fazzi D, Lappan U, Puttisong Y, Chen Z, Berggren M, Crispin X, Kiriy A, Adv. Mater., 30, 1801898 (2018)
  24. Wang Y, Nakano M, Michinobu T, Kiyota Y, Mori T, Takimiya K, Macromolecules, 50, 857 (2017)
  25. Grenier F, Berrouard P, Pouliot JR, Tseng HR, Heeger AJ, Leclerc M, Polym. Chem., 4, 1836 (2013)
  26. Wang E, Mammo W, Andersson MR, Adv. Mater., 26, 1801 (2014)
  27. Yan X, Xiong M, Li JT, Zhang S, Ahmad Z, Lu Y, Wang ZY, Yao ZF, Wang JY, Gu X, Lei T, J. Am. Chem. Soc., 141, 20215 (2019)
  28. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, Kastler M, Facchetti AA, Nature, 457, 679 (2009)
  29. Zhu Z, Chueh CC, Zhang G, Huang F, Yan H, Jen AKY, ChemSusChem, 9, 2586 (2016)
  30. Hou W, Xiao Y, Han G, Lin JY, Polymer, 11, 143 (2019)
  31. Morin PO, Bura T, Leclerc M, Mater. Horizons, 3, 11 (2016)
  32. Zhang M, Tsao HN, Pisula W, Yang C, Mishra AK, Müllen K, J. Am. Chem. Soc., 129, 3472 (2007)
  33. Wu W, Liu Y, Zhu D, Chem. Soc. Rev., 39, 1489 (2010)
  34. Nketia-Yawson B, Lee HS, Seo D, Yoon Y, Park WT, Kwak K, Son HJ, Kim B, Noh YY, Adv. Mater., 27, 3045 (2015)
  35. Yum S, An TK, Wang X, Lee W, Uddin MA, Kim YJ, Nguyen TL, Xu S, Hwang S, Park CE, Woo HY, Chem. Mater., 26, 2147 (2014)
  36. Liu X, Sun Y, Hsu BBY, Lorbach A, Qi L, Heeger AJ, Bazan GC, J. Am. Chem. Soc., 136, 5697 (2014)
  37. Zhang Y, Chien SC, Chen KS, Yip HL, Sun Y, Davies JA, Chen FC, Jen AKY, Chem. Commun., 47, 11026 (2011)
  38. Ying L, Hsu BBY, Zhan H, Welch GC, Zalar P, Perez LA, Kramer EJ, Nguyen TQ, Heeger AJ, Wong WY, Bazan GC, J. Am. Chem. Soc., 133, 18538 (2011)
  39. Lee W, Lee C, Yu H, Kim DJ, Wang C, Woo HY, Oh JH, Kim BJ, Adv. Funct. Mater., 26, 1543 (2016)
  40. Sharma S, Kolhe NB, Gupta V, Bharti V, Sharma A, Datt R, Chand S, Asha SK, Macromolecules, 49, 8113 (2016)
  41. Liu Q, Surendran A, Feron K, Manzhos S, Jiao X, McNeill CR, Bottle SE, Bell J, Leong WL, Sonar P, New J. Chem., 42, 4017 (2018)
  42. Vasimalla S, Senanayak SP, Sharma M, Narayan KS, Iyer PK, Chem. Mater., 26, 4030 (2014)
  43. Nketia-Yawson B, Lee HS, Seo D, Yoon Y, Park WT, Kwak K, Son HJ, Kim B, Noh YYA, Adv. Mater., 27, 3045 (2015)
  44. Lee J, Kang SH, Lee SM, Lee KC, Yang H, Cho Y, Han D, Li Y, Lee BH, Yang C, Angew. Chem.-Int. Edit., 57, 13629 (2018)
  45. Wang M, Ford M, Phan H, Coughlin J, Nguyen TQ, Bazan GC, Chem. Commun., 52, 3207 (2016)
  46. Yum S, An TK, Wang X, Lee W, Uddin MA, Kim YJ, Nguyen TL, Xu S, Hwang S, Park CE, Woo HY, Chem. Mater., 26, 2147 (2014)
  47. Zhou H, Yang L, Stuart AC, Price SC, Liu S, You W, Angew. Chem.-Int. Edit., 50, 2995 (2011)
  48. Ka N, Rout CS, RSC Adv., 11, 5659 (2021)
  49. McCullough RD, Adv. Mater., 10, 93 (1998)
  50. Li J, Du J, Xu J, Chan HLW, Yan F, Appl. Phys. Lett., 100, 33301 (2012)
  51. Kosco J, Moruzzi F, Willner B, McCulloch I, Adv. Energy Mater., 10, 2001935 (2020)