화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.3, 402-408, May, 2022
전도성 필러의 구조에 따른 고분자 복합체의 전기적 특성비교
Systematic Study on the Electrical properties of Polymer Composites with Various Types of Conductive Fillers
E-mail:
초록
본 연구에서는 전도성 필러인 카본블랙, multi-walled carbon nanotubes(MWCNTs), branched carbon nanotube( CNT)를 사용하여 자동차 전장 부품에 사용되는 PC/PBT, PA 6 기반의 복합 재료에 대한 전기적, 열적, 기계적 특성 및 모폴로지를 확인하였다. Branched CNT 필러는 두 고분자 소재에서 모두 가장 높은 전기적 특성을 보였다. 특히 MWCNTs보다 두배 이상의 표면 저항 및 전자기 간섭차폐효율(EMI SE) 개선 효과를 확인하였다. 이러한 이 유는 branched CNT가 linear MWCNTs에 비해 삼차원 구조를 구현할 수 있고, branched CNT 분기점에 접함점이 존재하여 쉽게 안정적인 전도성 네트워크를 형성할 수 있기 때문으로 보인다.
In this paper, the electrical, mechanical, and thermal properties of PA 6 and PC/PBT composites with various conductive fillers such as carbon black, multi-walled carbon nanotubes (MWCNTs), and branched carbon nanotube (CNT) were investigated. The PA 6 and PC/PBT composites with branched CNT fillers exhibited the highest electrical properties. In particular, The composites with branched CNTs showed more than twice the improved surface resistance and EMI SE than those with MWCNTs. This seems to be because branched CNTs can implement 3D structures compared to linear MWCNTs and easily form stable conductive networks due to the presence of junctions at branches.
  1. Han MS, Lee YK, Lee HS, Yun YH, Kim WN, Chem. Eng. Sci., 64, 4649 (2009)
  2. You KM, Park SS, Lee CS, Kim JM, Park GP, Kim WN, J. Mater. Sci., 46, 6850 (2011)
  3. Rahaman M, Chaki TK, Khastgir D, J. Mater. Sci., 46, 3989 (2011)
  4. Sachdev VK, Patel K, Bhattacharya S, Tandon RP, J. Appl. Polym. Sci., 120, 1100 (2011)
  5. Zhang L, Wang LB, See KY, Ma J, J. Mater. Sci., 48, 7757 (2013)
  6. Huang CY, Wu CC, Eur. Polym. J., 36, 2729 (2000)
  7. Im JS, Kim JG, Lee YS, Carbon, 47, 2640 (2009)
  8. Sung YT, Han MS, Song KH, Jung JW, Lee HS, Kum CK, Joo J, Kim WN, Polymer, 47, 4434 (2006)
  9. Papanicolaou GC, Papaefthymiou KP, Koutsomitopoulou AF, Portan DV, Zaoutsos SP, J. Mater. Sci., 47, 350 (2012)
  10. Imran SM, Kim Y, Shao GN, Hussai M, Choa YH, Kim HT, J. Mater. Sci., 49, 1328 (2014)
  11. Zetina-Hernandez O, Duarte-Aranda S, May-Pat A, Canche- Escamilla G, Uribe-Calderon J, Gonzalez-Chi P, Aviles F, J. Mater. Sci., 48, 7587 (2013)
  12. Yoo TW, Lee YK, Lim SJ, Yoon HG, Kim WN, J. Mater. Sci., 49, 1701 (2014)
  13. Yoo TW, Lee YK, Lim SJ, Yoon HG, Kim WN, J. Mater. Sci., 49, 1701 (2014)
  14. Jin C, Suenaga K, Iijima S, Nat. Nanotechnol., 3, 17 (2008)
  15. Terrones M, Terrones H, Banhart F, Charlier JC, Ajayan PM, Science, 288, 1226 (2000)
  16. Raghuveer MS, Ganesan PG, D'Arcy-Gall J, Ramanath G, Marshall M, Petrov I, Appl. Phys. Lett., 84, 4484 (2004)
  17. Joh HI, Ha HY, Prabhuram J, Jo SM, Moon SH, Carbon, 49, 4601 (2011)
  18. AuBuchon JF, Chen LH, Daraio C, Jin S, Nano Lett., 6, 324 (2006)
  19. Du GH, Li WZ, Liu YQ, Ding Y, Wang ZL, J. Phys. Chem. C, 111, 14293 (2007)
  20. Gothard N, Daraio C, Gai llard J, Zidan R, Jin S, Rao AM, Nano Lett., 4, 213 (2004)
  21. Wei D, Liu Y, Cao L, Fu L, Li X, Wang Y, Yu G, Zhu DA, Nano Lett., 6, 186 (2006)
  22. Krause B, Barbier C, Kunz K, Pötschke P, Polymer, 159, 75 (2018)
  23. Nirmalraj PN, Lyons PE, De S, Coleman JN, Boland JJ, Nano Lett., 9, 3890 (2009)