화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.109, 79-99, May, 2022
Microfluidic free-flow electrophoresis: A promising tool for protein purification and analysis in proteomics
E-mail:,
Microfluidic free-flow electrophoresis (μFFE) is the most promising technique for proteomics. This method can perform real-time separation and detection of analytes in a small device where a continuousflowof carrier buffer is driven and an external electric field is applied perpendicular to the buffer flow. The capability of μFFE has motivated extensive applications pertaining to the pre-fractionation, enrichment, and higherlevel purification of target proteins in biological systems. This review introduces the proteomics applications of the technique, along with a detailed theoretical overview, as follows. First, the principle and the band broadening involved in μFFE are explained. Next, materials for the fabrication of a μFFE device are described, followed by a summary of the online detection methods for μFFE. Finally, various applications of μFFE in proteomics fields are introduced, particularly focusing on microfluidic free-flow zone electrophoresis and microfluidic free-flow isoelectric focusing, the two major separation modes of μFFE.
  1. Liu X, Chai Y, Misuno K, Zhang M, Hu S, in: Tissue, Serum and Saliva Sampling for Proteomic Analysis, Elsevier, Amsterdam, pp. 359–364, 2012.
  2. Roncada P, Stipetic LH, Bonizzi L, Burchmore RJS, Kennedy MW, J. Proteomics, 88, 47 (2013)
  3. Kavallaris M, Marshall GM, Med. J. Aust., 182, 575 (2005)
  4. Gregorich ZR, Ge Y, Proteomics, 14, 1195 (2014)
  5. Farmerie L, Rustandi RR, Loughney JW, Dawod M, J. Chromatogr. Sci., 1651, 1 (2021)
  6. Zhang H, Liu AY, Loriaux P, Zhou Y, Watts JD, Aebersold R, Mol. Cell. Proteomics, 5, 64 (2007)
  7. Washburn MP, Wolters D, Nat. Biotechnol., 19, 242 (2001)
  8. Zhang H, Li XJ, Martin DB, Aebersold R, Nat. Biotechnol., 21, 660 (2003)
  9. O’Farrell PZ, Goodman HM, Cell, 9, 289 (1976)
  10. Klose J, Humangenetik, 26, 231 (1975)
  11. Novo P, Janasek D, Anal. Chim. Acta, 991, 9 (2017)
  12. Wildgruber R, Weber G, Wise P, Grimm D, Bauer J, Proteomics, 14, 629 (2014)
  13. Kuchumov A, Weber G, Eckerskorn C, in: Reducing Protein Sample Complexity with Free Flow Electrophoresis, CRC Press, Boca Raton, pp. 187–204, 2006.
  14. Islinger M, Eckerskorn C, Völkl A, Electrophoresis, 31, 1754 (2010)
  15. Kwon JS, Wereley ST, J. Fluids Eng., 135, 0213061 (2013)
  16. Kwon JS, Ravindranath SP, Kumar A, Irudayaraj J, Wereley ST, Lab Chip, 12, 4955 (2012)
  17. Wang JY, Kwon JS, Hsu SM, Chuang HS, Lab Chip, 20, 356 (2020)
  18. Wijnen PAHM, Dieijen-Visser MPV, Clin. Chem. Lab. Med., 34, 535 (1996)
  19. Drabik A, Bodzon-Kułakowska A, Silberring J, in: Gel Electrophoresis, Elsevier, Amsterdam, pp. 115–143, 2016.
  20. Chéry CC, Cremer KD, Cornelis R, Vanhaecke F, Moens L, J. Anal. At. Spectrom., 18, 1113 (2003)
  21. Cai Z, Liu X, Chen H, Yang R, Chen J, Zou L, Wang C, Chen J, Tan M, Mei Y, Wei L, Sci. Rep., 11, 1 (2021)
  22. Hannig K, Fresenius’ Zeitschrift für analytische Chemie, 181, 244 (1961)
  23. Barrollier VJ, Watzke E, Gibian H, Zeitschrift für Naturforschung B, 754 (1958)
  24. Kwon JS, Bowser MT, in: Micro Free-Flow Electrophoresis, Springer, Dordrecht, pp. 2092–2105, 2016.
  25. Weber PJA, Weber G, Eckerskorn C, Curr. Protoc. Protein Sci., 32 (2003)
  26. Weber G, Bocek P, Electrophoresis, 19, 1649 (2005)
  27. Krivánková L, Bocek P, Electrophoresis, 19, 1064 (2005)
  28. Eichacker LA, Weber G, Sukop-Köppel U, Wildgruber R, in: Free Flow Electrophoresis for Separation of Native Membrane Protein Complexes, Humana Press, New York, pp. 415–425, 2015.
  29. Turgeon RT, Bowser MT, Anal. Bioanal. Chem., 394, 187 (2009)
  30. Johnson AC, Bowser MT, Lab Chip, 18, 27 (2018)
  31. Kohlheyer D, Eijkel JCT, Berg AVD, Schasfoort RBM, Electrophoresis, 29, 977 (2008)
  32. Herzog C, Poehler E, Peretzki AJ, Borisov SM, Aigner D, Mayr T, Nagl S, Lab Chip, 16, 1565 (2016)
  33. Johnson AC, Bowser MT, Anal. Chem., 89, 1665 (2017)
  34. Clifton MJ, Jouve N, Balmann HD, Sanchez V, Electrophoresis, 11, 913 (1990)
  35. Poggel M, Melin T, Electrophoresis, 22, 1008 (2001)
  36. Malmström J, Lee H, Nesvizhskii AI, Shteynberg D, Mohanty S, Brunner E, Ye M, Weber G, Eckerskorn C, Aebersold R, J. Proteome Res., 5, 2241 (2006)
  37. Chartogne A, Tjaden UR, Greef JVd, Rapid Commun. Mass Spectrom., 14, 1269 (2000)
  38. Raymond DE, Manz A, Widmer HM, Anal. Chem., 66, 2858 (1994)
  39. Roman MC, Brown PR, Anal. Chem., 66, 86A (1994)
  40. Rudisch BM, Pfeiffer SA, Geissler D, Speckmeier E, Robitzki AA, Zeitler K, Belder D, Anal. Chem., 91, 6689 (2019)
  41. Manz A, Eijkel JCT, Pure Appl. Chem., 73, 1555 (2009)
  42. Fonslow BR, Bowser MT, Anal. Chem., 78, 8236 (2006)
  43. Jezierski S, Belder D, Nagl S, Chem. Commun., 49, 904 (2013)
  44. Courtney M, Thompson E, Glawdel T, Ren CL, Anal. Chem., 92, 7317 (2020)
  45. Jender M, Novo P, Maehler D, Münchberg U, Janasek D, Freier E, Anal. Chem., 92, 6764 (2020)
  46. Kinde TF, Hess N, Dutta D, Electrophoresis, 41, 545 (2020)
  47. Knisley KA, Rodkey LS, Electrophoresis, 11, 927 (1990)
  48. Köhler S, Nagl S, Fritzsche S, Belder D, Lab Chip, 12, 458 (2012)
  49. Shen QY, Guo CG, Yan J, Zhang Q, Xie HY, Jahan S, Fan LY, Xiao H, Cao CX, J. Chromatogr. Sci., 1397, 73 (2015)
  50. Song YA, Chan M, Celio C, Tannenbaum SR, Wishnok JS, Han J, Anal. Chem., 82, 2317 (2010)
  51. Albrecht JW, Jensen KF, Electrophoresis, 27, 4960 (2006)
  52. Albrecht JW, El-Ali J, Jensen KF, Anal. Chem., 79, 9364 (2007)
  53. Kobayashi H, Shimamura K, Akaida T, Sakano K, Tajima N, Funazaki J, Suzuki H, Shinohara E, J. Chromatogr. Sci., 990, 169 (2003)
  54. Kohlheyer D, Eijkel JCT, Schlautmann S, Berg AVD, Schasfoort RBM, Anal. Chem., 79, 8190 (2007)
  55. Raymond DE, Manz A, Widmer HM, Anal. Chem., 68, 2515 (1996)
  56. Walowski B, Hüttner W, Wackerbarth H, Anal. Bioanal. Chem., 401, 2465 (2011)
  57. Becker M, Marggraf U, Janasek D, J. Chromatogr. Sci., 1216, 8265 (2009)
  58. Poggel M, Melin T, Treutlein S, Electrophoresis, 23, 2252 (2002)
  59. Sun WW, Dai RJ, Li YR, Dai GX, Liu XJ, Li B, Lv XF, Deng YL, Luo AQ, Acta Astronaut., 166, 573 (2020)
  60. Fonslow BR, Bowser MT, Anal. Chem., 80, 3182 (2008)
  61. Akagi T, Kubota R, Kobayashi M, Ichiki T, Jpn. J. Appl. Phys., 54, 06FN05 (2015)
  62. Ding H, Li X, Lv X, Xu J, Sun X, Zhang Z, Wang H, Deng Y, Analyst, 137, 4482 (2012)
  63. Jezierski S, Gitlin L, Nagl S, Belder D, Anal. Bioanal. Chem., 401, 2651 (2011)
  64. Fonslow BR, Barocas VH, Bowser MT, Anal. Chem., 78, 5369 (2006)
  65. Kohlheyer D, Besselink GAJ, Schlautmann S, Schasfoort RBM, Lab Chip, 6, 374 (2006)
  66. Herzog C, Beckert E, Nagl S, Anal. Chem., 86, 9533 (2014)
  67. Köhler S, Weilbeer C, Howitz S, Becker H, Beushausend V, Belder D, Lab Chip, 11, 309 (2011)
  68. Barbaresco F, Cocuzza M, Pirri CF, Marasso SL, Nanomaterials, 10, 1 (2020)
  69. Anciaux SK, Bowser MT, Electrophoresis, 41, 225 (2019)
  70. Anciaux SK, Geiger M, Bowser MT, Anal. Chem., 88, 7675 (2016)
  71. Jesus DPD, Blanes L, Lago CLD, Electrophoresis, 27, 4935 (2006)
  72. Lago CLD, Neves CA, Jesus DPD, Silva HDTD, Brito-Neto JGA, Silva JAFD, Electrophoresis, 25, 3825 (2004)
  73. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM, Electrophoresis, 21, 27 (2000)
  74. Gale BK, Eddings MA, Sundberg SO, Hatch A, Kim J, Ho T, in: Low-Cost MEMS Technologies, Elsevier, Amsterdam, pp. 341–378, 2008.
  75. Sood V, The University of Texas at Arlington, Texas (2007).
  76. Adamson NJ, Reynolds EC, J. Chromatogr. B, 699, 133 (1997)
  77. Makino K, Ohshima H, Langmuir, 26, 18016 (2010)
  78. Stalcup AM, in: Chiral Separations by Capillary Electrophoresis, Elsevier, Amsterdam, pp. 241–275, 2006.
  79. Lu N, Sticker D, Kretschmann A, Petersen NJ, Kutter JP, Anal. Bioanal. Chem., 412, 3559 (2020)
  80. Cheng LJ, Chang HC, Lab Chip, 14, 979 (2014)
  81. Zhang CX, Manz A, Anal. Chem., 75, 5759 (2003)
  82. Song YA, Wu L, Tannenbaum SR, Wishnok JS, Han J, Anal. Chem., 85, 11695 (2013)
  83. Benz C, Boomhoff M, Appun J, Schneider C, Belder D, Angew. Chem.-Int. Edit., 54, 2766 (2015)
  84. Fu X, Mavrogiannis N, Ibo M, Crivellari F, Gagnon ZR, Electrophoresis, 38, 327 (2016)
  85. Poehler E, Herzog C, Lotter C, Pfeiffer SA, Aigner D, Mayr T, Nagl S, Analyst, 140, 7496 (2015)
  86. Wen J, Wilker EW, Yaffe MB, Jensen KF, Anal. Chem., 82, 1253 (2010)
  87. Wen J, Albrecht JW, Jensen KF, Electrophoresis, 31, 1606 (2010)
  88. Xu Y, Zhang CX, Janasek D, Manz A, Lab Chip, 3, 224 (2003)
  89. Becker M, Budich C, Deckert V, Janasek D, Analyst, 134, 38 (2009)
  90. Janasek D, Schilling M, Franzke J, Manz A, Anal. Chem., 78, 3815 (2006)
  91. Belder D, Ludwig M, Electrophoresis, 24, 3595 (2003)
  92. Janasek D, Schilling M, Manz A, Franzke J, Lab Chip, 6, 710 (2006)
  93. White FM, Fluid Mechanics, fourth Ed., McGraw-Hill Higher Education, Toronto, 1998.
  94. Kwon JS, Maeng JS, Chun MS, Song S, Microfluid. Nanofluid., 5, 23 (2008)
  95. Morgan H, Green NG, AC Electrokinetics: Colloids and Nanoparticles, Research Studies Press LTD., Baldock, 2002.
  96. Saar KL, Müller T, Charmet J, Challa PK, Knowles TPJ, Anal. Chem., 90, 8998 (2018)
  97. Zhou W, Xia L, Xiao X, Li G, Pu Q, Electrophoresis, 40, 2165 (2019)
  98. Ou J, Glawdel T, Samy R, Wang S, Liu Z, Ren CL, Pawliszyn J, Anal. Chem., 80, 7401 (2008)
  99. Mao Q, Pawliszyn J, Analyst, 124, 637 (1999)
  100. Ou J, Glawdel T, Ren CL, Pawliszyn J, Lab Chip, 9, 1926 (2009)
  101. Liu Z, Ou J, Samy R, Glawdel T, Huang T, Ren CL, Pawliszyn J, Lab Chip, 8, 1738 (2008)
  102. Liu Z, Wu SS, Pawliszyn J, J. Chromatogr. Sci., 1140, 213 (2007)
  103. Bo T, Pawliszyn J, Anal. Biochem., 350, 91 (2006)
  104. Lemma T, Pawliszyn J, J. Pharm. Biomed. Anal., 50, 570 (2009)
  105. Goodridge L, Goodridge C, Wu J, Griffiths M, Pawliszyn J, Anal. Chem., 76, 48 (2004)
  106. Liu Z, Pawliszyn J, Electrophoresis, 26, 556 (2005)
  107. Beyreiss R, Geißler D, Ohla S, Nagl S, Posch TN, Belder D, Anal. Chem., 85, 8150 (2013)
  108. Fonslow BR, Bowser MT, Anal. Chem., 77, 5706 (2005)
  109. Turgeon RT, Bowser MT, Electrophoresis, 30, 1342 (2009)
  110. Kinsey JL, Annu. Rev. Phys. Chem., 28, 349 (1977)
  111. Cerovic ZG, Samson G, Morales F, Tremblay N, Moya I, Agronomie, 19, 543 (1999)
  112. Sharma B, Frontiera RR, Henry AI, Ringe E, Duyne RPV, Mater. Today, 15, 16 (2012)
  113. Rajawat J, Jhingan G, in: Mass spectroscopy, Elsevier, pp. 1–20, 2019.
  114. Hühner J, Lämmerhofer M, Neusüß C, Electrophoresis, 36, 2670 (2015)
  115. Sczesny S, Nau H, Hamscher G, J. Agric. Food Chem., 51, 697 (2003)
  116. Mazereeuw M, Best CMD, Tjaden UR, Irth H, Greef JVD, Anal. Chem., 72, 3881 (2000)
  117. Belin GK, Seeger S, Electrophoresis, 30, 2565 (2009)
  118. Ohlsson PD, Ordeig O, Mogensen KB, Kutter JP, Electrophoresis, 30, 4172 (2009)
  119. Wang H, Dou P, Lü C, Liu Z, J. Chromatogr. Sci., 1246, 48 (2012)
  120. Lee JH, Song YA, Han J, Lab Chip, 8, 596 (2008)
  121. Kang D, Moon MH, Anal. Chem., 78, 5789 (2006)
  122. Righetti PG, Tudor G, Ek K, J. Chromatogr. Sci., 220, 115 (1981)
  123. Righetti PG, Caravaggio T, J. Chromatogr. Sci., 127, 1 (1976)