화학공학소재연구정보센터
Electrophoresis, Vol.41, No.7-8, 545-553, 2020
Enhancement in MS-based peptide detection by microfluidic free-flow zone electrophoresis
Matrix components are known to significantly alter the ionization of a target analyte in ESI-based measurements particularly when working with complex biological samples. This issue however may be alleviated by extracting the analyte of interest from the original sample into a relatively simple matrix compatible with ESI mass-spectrometric analysis. In this article, we report a microfluidic device that enables such extraction of small peptide molecules into an ESI-compatible solvent stream significantly improving both the sensitivity and reproducibility of the measurements. The reported device realizes this analyte extraction capability based on the free-flow zone electrophoretic fractionation process using a set of internal electrodes placed across the width of the analysis channel. Employing lateral electric fields and separation distances of 75 V/cm and 600 mu m, respectively, efficient extraction of the model peptide human angiotensin II was demonstrated allowing a reduction in its detection limit by one to three orders of magnitude using the ESI-MS method. The noted result was obtained in our experiments both for a relatively simple specimen comprising DNA strands and angiotensin II as well as for human serum samples spiked with the same model peptide.