- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.46, No.2, 295-299, March, 2022
이중층 폴리피롤 복합재료 지지체
Polypyrrole/Poly(1-(2-carboxyehtyl)pyrrole) Bilayered Composite Scaffold for Cell Adhesion
E-mail:
초록
전도성 고분자-폴리피롤은 화학구조상 공유결합을 할 수 있는 작용기가 존재하지 않는다. 이에 상용 1-(2-cyanoethyl)- pyrrole을 가수분해 반응시켜 카복실산 작용기를 갖는 피롤 유도단량체를 합성하고 이를 폴리피롤의 표면상에서 전기화 학적으로 고분자 중합하여, 이중층으로 구성된 전도성 복합재 료 지지체를 개발하였다. 지지체 표면에 도입한 카복실산 작 용기와 조직인식(Arg-Gly-Asp(RGD)를 포함하는)-올리고펩타 이드를 선택적으로 화학결합시킨 후, 모델 세포조직-인간 제 대혈관 내피세포(HUVEC)의 흡착 및 증식정도에 대한 정성 및 정량평가를 통해 생물학적 활성이 증진됨을 확인할 수 있 었다. 따라서, 이상에서 개발된 전도성 폴리피롤 복합재료는 조직공학을 위한 생체모사용 지지체로서 다양한 플랫폼 역할 을 할 것으로 기대된다.
Polypyrrole/poly(1-(2-carboxyethyl)pyrrole) (PPy/ PPyCOOH) bilayered composite is demonstrated as a platform for surface modification and cell attachment. The composite is developed by polymerizing 1-(2-carboxyethyl)pyrrole onto the surface of PPy film using an electrochemical layer-by-layer deposition technique. FTIR and X-ray photoelectron spectroscopy (XPS) are used to determine the presence of carboxylic acid functionality (-COOH) at the PPyCOOH layer surface of the bilayered composite. A four-point probe analysis is used to verify electrical conductivity in the semiconductor range. The carboxylic acid functionality is further tailored by chemically conjugating a cell-adhesive Arg-Gly-Asp (RGD)-containing oligopeptide, GRGDSP, onto the PPyCOOH surface of the composite. Human umbilical vein endothelial cells (HUVECs) cultured on the RGD-grafted composite successfully demonstrate the improved cell adhesion and spreading compared with an ungrafted control PPy/PPyCOOH.
- Li J, Lin X, Biosens. Bioelectron., 22, 2898 (2007)
- Poole-Warren L, Lovell N, Baek S, Expert Rev. Med. Devic., 7, 35 (2010)
- Shirakawa H, Angew. Chem.-Int. Edit., 40, 2574 (2001)
- Guimard NK, Gomez N, Schmidt CE, Prog. Polym. Sci, 32, 876 (2007)
- Skotheim TA, Elsenbaumer RL, Reynolds JR, Handbook of Conducting Polymers, 2nd ed., Marcel Dekker, New York, 1998.
- Lee JW, Serna F, Schmidt CE, Langmuir, 22, 9816 (2006)
- McCarley RL, Willicut RJ, J. Am. Chem. Soc., 120, 9296 (1998)
- Mecerreyes D, Pomposo JA, Bengoetxea M, Grande H, Macromolecules, 33, 5846 (2000)
- Lee JW, Polym. Korea, 41, 367 (2017)
- O’Brien FJ, Mater. Today, 14, 88 (2011)
- Nikolova MP, Chavali MS, Bioact. Mater., 4, 271 (2019)
- Rowlands AS, Lim SA, Martin D, Cooper-White JJ, Biomaterials, 28, 2109 (2007)
- Chaudhari AA, Vig K, Baganizi DR, Sahu R, Dixit S, Dennis V, Singh SR, Pillai SR, Int. J. Mol. Sci., 17, 1974 (2016)
- Munir N, McDonald A, Callanan A, ACS Omega, 5, 12623 (2020)
- Yao Q, Nooeaid P, Detsch R, Roether JA, Dong Y, Goudouri OM, Schubert DW, Boccaccini AR, J. Biomed. Mater. Res. Pt. A, 102, 4510 (2014)
- Landry MJ, Rollet FG, Kennedy TE, Barrett CJ, Langmuir, 34, 8709 (2018)
- Karazehir T, Gokce ZG, Ates M, Sarac AS, EXPRESS Polym. Lett., 11, 449 (2017)
- Azioune A, Slimane AB, Hamou LA, Pleuvy A, Chehimi MM, Perruchot C, Armes SP, Langmuir, 20, 3350 (2004)
- Wong JY, Langer R, Ingber DE, Proc. Natl. Acad. Sci. U. S. A., 91, 3201 (1994)
- Diaz AF, Castillo JA, Logan JA, Lee WY, Electroanalysis, 129, 115 (1981)
- Hoelzle MK, Svitkina T, Mol. Biol. Cell, 23, 310 (2012)
- Cory AH, Owen TC, Barltrop JA, Cory JG, Cancer Commun., 3, 207 (1991)