화학공학소재연구정보센터
Polymer(Korea), Vol.41, No.3, 367-371, May, 2017
[속보] 전도성 복합재료 개발을 위한 텔레킬릭 고분자: 메타크릴레이트-끝 씌어진 폴리피롤 합성
Synthesis of Methacrylate-Endcapped Conductive Polypyrrole as a Telechelic Polymer
초록
일반적인 전도성고분자-폴리피롤(polypyrrole)의 경우, 화학구조상 화학결합을 할 수 있는 작용기가 없어 그 응용성 에 많은 제한이 따른다. 이에 피롤-단량체에 새로운 고분자 중합이 가능한 비닐(vinyl) 작용기를 한쪽 끝에 화학적으로 도 입하여, 필요에 따라 선택적으로 고분자 중합을 할 수 있는 이중 작용기 피롤-단량체 유도체, 메타크릴레이트-끝 씌어진 피롤을 합성하였다. 새롭게 합성된 이 단량체를 전기화학적인 방법으로 고분자 중합을 선택적으로 실시하여, 비닐 작용기를포함하는 새로운 전도성고분자, 메타크릴레이트-끝 씌어진 폴리피롤을 성공적으로 합성하였다. 이는 전도성 복합재료 개발 을 위한 텔레킬릭 고분자로써, 다른 비닐작용기를 포함하는 범용 플라스틱 단량체와 전기화학 이외의 방법으로 다양한 그라프트 공중합체(graft copolymer) 합성이 가능하다.
This paper reports on the electrochemical synthesis of electrically conductive N-methacrylated polypyrrole as a unique telechelic polymer with highly reactive vinyl functionality, which can be further polymerized to prepare graft copolymers with low molecular weight typical monomers such as other (meth)acrylates, styrenes, (meth)acrylamides, and (meth)acrylonitriles using ionic, radical, and other specialized polymerization techniques. It is based on a new dual reactive monomer containing each methacrylate and pyrrole functionalities at each opposite end of the structure, 3-((3-(1H-pyrrol-1-yl)propanoyl) oxy)-2-hydroxypropyl methacrylate, whose the synthesis is presented in this work.
  1. Barisci JN, Conn C, Wallace GG, Trends Polym. Sci., 4, 307 (1996)
  2. Poole-Warren L, Lovell N, Baek S, Green R, Expert Rev. Med. Devic., 7, 35 (2010)
  3. Kraft A, Grimsdale AC, Holmes AB, Angew. Chem.-Int. Edit., 37, 402 (1998)
  4. Killian JG, Coffey BM, Gao F, Poehler TO, Searson PC, J. Electrochem. Soc., 143(3), 936 (1996)
  5. Leventis N, Polym. News, 20, 5 (1995)
  6. Olmedo L, Hourquebie P, Jousse F, Adv. Mater., 3, 373 (1993)
  7. Beck F, Michaelis R, J. Coat. Technol., 64, 59 (1992)
  8. Rodriguez J, Grande H, Otero TF, Handbook of Organic Conductive Molecules and Polymers, John Wiley, New York, 1997.
  9. Skotheim TA, Elsenbaumer RL, Reynolds JR, Handbook of Conducting Polymers, 2nd ed., Marcel Dekker, New York, 1998.
  10. Guimard NK, Gomez N, Schmidt CE, Prog. Polym. Sci, 32, 876 (2007)
  11. Cho Y, Borgens RB, Nanotechnology, 21, 205102 (2010)
  12. Kim DH, Richardson-Burns SM, Hendricks JL, Sequera C, Martin DC, Adv. Funct. Mater., 17(1), 79 (2007)
  13. Green RA, Lovell NH, Poole-Warren LA, Acta Biomater., 6, 63 (2010)
  14. Liu X, Yue Z, Higgins MJ, Wallace GG, Biomaterials, 32, 7309 (2011)
  15. Green RA, Lovell NH, Poole-Warren LA, Biomaterials, 30, 3637 (2009)
  16. Lee JW, Serna F, Nickels J, Schmidt CE, Biomacromolecules, 7(6), 1692 (2006)
  17. Lee JY, Lee JW, Schmidt CE, J. R. Soc. Interface, 6, 735 (2009)
  18. Lee JW, Serna F, Schmidt CE, Langmuir, 22(24), 9816 (2006)
  19. Mecerreyes D, Pomposo JA, Bengoetxea M, Grande H, Macromolecules, 33(16), 5846 (2000)
  20. Alkan S, Toppare L, Hepuzer Y, Yagci Y, J. Polym. Sci. A: Polym. Chem., 37(22), 4218 (1999)
  21. Hadjichristidis N, Pispas S, Floudas G, Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, John Wiley, Hoboken, 2002.
  22. Bevington JC, Harris DO, J. Polym. Sci. B: Polym. Phys., 5, 799 (1967)
  23. Reis AV, Fajardo AR, Schuquel ITA, Guilherme MR, Vidotti GJ, Rubira AF, Muniz CE, J. Org. Chem., 74, 3750 (2009)
  24. Labaye DE, Jerome C, Geskin VM, Louette P, Lazzaroni R, Martinot L, Jerome R, Langmuir, 18(13), 5222 (2002)
  25. Lee JY, Jeong ED, Ahn CW, Lee JW, Synth. Met., 185-186, 66 (2013)
  26. Lee TY, Shim YB, Shin SC, Synth. Met., 126, 105 (2002)
  27. Collis GE, Burrell AK, Scott SM, Officer DL, J. Org. Chem., 68, 8974 (2003)
  28. Li G, Koßmehl G, Welzel HP, Engelmann G, Hunnius WD, Plieth W, Zhu H, Macromol. Chem. Phys., 199, 2255 (1998)