화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 411-417, April, 2022
Pen-drawn air cathode featuring graphite felt substrate modified with MnO2-decorated graphene flakes and PEDOT network for rechargeable zinc–air battery
E-mail:,
Zinc–air batteries (ZABs) have drawn attention recently as alternatives to conventional Li-ion batteries because of their high energy density, abundance in the earth’s crust, and relatively low production cost. Although ZABs are incredibly stable under normal conditions unlike popular Li-based energy storage devices, many challenging issues remain. Requirements such as rechargeability, low-cost fabrication, and mass production of an effective bifunctional catalyst restrict the use of commercial ZABs to a few small electronic gadgets. In this study, we introduce a functionalized pen-drawable ink composed of amorphous MnO2 with a large specific area, graphene sheet (GS) flakes, and poly(3,4-ethylenedioxythio phene) (PEDOT). The MnO2-decorated GS is successfully immobilized on graphite felt (GF) using the PEDOT network. The pen-drawn MnO2@GS/PEDOT/GF substrate is further used as a bifunctional air cathode. Power density of the air cell is 37.8 mW·cm-2 at 55 mA·cm-2. The potential difference between the half-wave potential of the oxygen reduction reaction and the operational potential of the oxygen evolution reaction is 0.74 V; this value is comparable to that of traditional noble metal catalysts, and is obtained at a current density of 10 mA·cm-2 with the pen-drawn cathode in a two-electrode system containing a conventional 6 M KOH electrolyte.
  1. Faegh E, Ng B, Hayman D, Mustain WE, Nat. Energ., 6, 21 (2021)
  2. Postula JJ, Thacker R, Energ. Convers, 10, 45 (1970)
  3. Meadowcroft DB, Nature, 226, 847 (1970)
  4. Jindra J, Mrha J, Musilova M, J. Appl. Electrochem., 3, 297 (1973)
  5. Pan J, Tian XL, Zaman S, Dong ZH, Liu HF, Park HS, et al., Batteries Supercaps, 2, 336 (2019)
  6. Huang YY, Wang YQ, Tang C, Wang J, Zhang Q, Wang YB, et al., Adv. Mater., 31, 1803800 (2019)
  7. Ji DX, Fan L, Li LL, Peng SJ, Yu DS, Song JN, et al., Adv. Mater., 31, 1808267 (2019)
  8. Han XP, Ling XF, Wang Y, Ma TY, Zhong C, Hu WB, et al., Angew. Chem.-Int. Edit., 58, 5359 (2019)
  9. Han C, Li WJ, Liu HK, Dou SX, Wang JZ, Mater. Horizons, 6, 1812 (2019)
  10. Chen S, Shu XX, Wang HS, Zhang JT, J. Mater. Chem. A, 7, 19719 (2019)
  11. Yang ZK, Ma J, Araby S, Shi DJ, Dong WF, Tang T, et al., J. Power Sources, 412, 655 (2019)
  12. Liu B, Liu YJ, Chen HB, Yang M, Li HM, ACS Sustain. Chem. Eng., 7, 3101 (2019)
  13. Guo CX, Wang M, Chen T, Lou XW, Li CM, Adv. Energy Mater., 1, 736 (2011)
  14. Yu GH, Hu LB, Liu NA, Wang HL, Vosgueritchian M, Yang Y, et al., Nano Lett., 11, 4438 (2011)
  15. Tang PY, Han LJ, Zhang L, ACS Appl. Mater. Inter, 6, 10506 (2014)
  16. Moussa M, Shi G, Wu H, Zhao ZH, Voelcker NH, Losic D, et al., Mater. Des., 125, 1 (2017)
  17. Cho S, Kim M, Jang J, ACS Appl. Mater. Inter, 7, 10213 (2015)
  18. Pei Z, Yuan Z, Wang C, Zhao S, Fei J, Wei L, et al., Angew. Chem.-Int. Edit., 132, 4823 (2020)
  19. Synodis M, Pikul J, Allen SAB, Allen MG, J. Power Sources, 449, 227566 (2020)
  20. Miao H, Chen B, Li S, Wu X, Wang Q, Zhang C, et al., J. Power Sources, 450, 227653 (2020)
  21. Wei L, Karahan HE, Zhai SL, Liu HW, Chen XC, Zhou Z, et al., Adv. Mater., 29, 1701410 (2017)
  22. Li YG, Gong M, Liang YY, Feng J, Kim JE, Wang HL, et al., Nat. Commun., 4, 1805 (2013)
  23. Li H, Li Q, Wen P, Williams TB, Adhikari S, Dun CC, et al., Adv. Mater., 30, 1705796 (2018)
  24. Zang WJ, Sumboja A, Ma YY, Zhang H, Wu Y, Wu SS, et al., ACS Catal., 8, 8961 (2018)
  25. Ma LT, Chen SM, Pei ZX, Huang Y, Liang GJ, Mo FN, et al., ACS Nano, 12, 1949 (2018)
  26. Lee HU, Park C, Jin JH, Kim SW, J. Power Sources, 453, 227898 (2020)
  27. Huang Y, Lin Y, Li W, Electrochim. Acta, 99, 161 (2013)
  28. Lee HU, Kim SW, J. Mater. Chem. A, 5 (2017)
  29. Huang X, Lv D, Yue H, Attia A, Yang Y, Nanotechnology, 19, 225606 (2008)
  30. Johra FT, Lee JW, Jung WG, J. Ind. Eng. Chem., 20, 2883 (2014)
  31. Ji C, Ren H, Yang S, RSC Adv., 5, 21978 (2015)
  32. Liu Y, Weng B, Razal JM, Qun X, Zhao C, Hou Y, Seyedin S, Jalili R, Wallace GG, Chen J, Sci. Rep., 5, 17045 (2015)
  33. Kundu TK, Jana A, Barik P, Bull. Mater. Sci., 31, 501 (2008)
  34. Munaiah Y, Raj BGS, Kumar TP, Ragupathy P, J. Mater. Chem. A, 1, 4300 (2013)
  35. Tang C, Zhao K, Tang Y, Li F, Meng Q, Electrochim. Acta, 375, 137960 (2021)
  36. Ruan P, Xilian XU, Gao X, Feng J, Linhai YU, Cai Y, et al., Sustain Mater Technol., 28, e00254 (2021)
  37. de Izarra A, Choi C, Jang YH, Lansac Y, J. Phys. Chem. B, 125, 1916 (2021)
  38. Su CY, Cheng H, Li W, Liu ZQ, Li N, Hou Z, et al., Adv. Energy Mater., 7, 1602420 (2017)
  39. Aijaz A, Masa J, Rösler C, Xia W, Weide P, Botz AJR, Fischer RA, Schuhmann W, Muhler M, Angew. Chem.-Int. Edit., 55, 4087 (2016)
  40. Liu R, Xian Z, Zhang S, Chen C, Yang Z, Li H, et al., RSC Adv., 5, 74447 (2015)
  41. Zhou RF, Zheng Y, Jaroniec M, Qiao SZ, ACS Catal., 6, 4720 (2016)
  42. Kim J, Bard AJ, Anal. Chem., 88, 1742 (2016)
  43. Gu YD, Yan GB, Lian YB, Qi PW, Mu QQ, Zhang CF, et al., Energy Storage Mater., 23, 252 (2019)