화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 400-410, April, 2022
Control of textural property in spherical alumina ball for enhanced catalytic activity of Ni-supported Al2O3 catalyst in steam–methane reforming
E-mail:
Designing Ni-based catalyst with high performance is one of the most important challenges for operation of practical steam-methane reforming (SMR) processes. We report control of the textural properties of commercial alumina ball for Ni-supported catalysts in SMR. The textural properties of the commercial Al2O3 sphere are successfully controlled by aqueous HCl treatment for elongated periods. The pore diameters and pore volumes of the controlled alumina supports are finely tuned by varying the HCl treatment period. The catalytic activity of the corresponding Ni-supported alumina is significantly enhanced with increasing HCl treatment period on alumina ball. The alumina supports with longer HCl treatment period have larger pore size and bigger pore volume, and the corresponding Ni-Alumina catalysts exhibited higher catalytic activity at even higher space velocity, due to the increased intraparticle diffusion of reactant molecules inside the catalyst. Ni-supported alumina catalyst prepared by using alumina support treated with HCl for 18 h showed the largest pore size and pore volume, revealing enhanced catalytic activity in terms of CH4 conversion and H2 yield. It showed the well-maintained activity without any further deactivation in both continuous operation for 24 h and cyclic operation at different WHSV conditions.
  1. Sforza PM, in Chapter 1 - Idealized Flow Machines, P.M. Sforza Ed., pp. 1-34, Butterworth-Heinemann, Boston (2012).
  2. Parrondo J, Arges CG, Niedzwiecki M, Anderson EB, Ayers KE, Ramani V, RSC Adv., 4, 9875 (2014)
  3. Rakousky C, Reimer U, Wippermann K, Carmo M, Lueke W, Stolten D, J. Power Sources, 326, 120 (2016)
  4. Ng YH, Iwase A, Kudo A, Amal R, J. Phys. Chem. Lett., 1, 2607 (2010)
  5. Jang JS, Kim HG, Lee JS, Catal. Today., 185, 270 (2012)
  6. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M, Plant Physiol., 122, 127 (2000)
  7. Woodward J, Orr M, Cordray K, Greenbaum E, Nature, 405, 1014 (2000)
  8. LeValley TL, Richard AR, Fan M, Int. J. Hydrog. Energy, 39, 16983 (2014)
  9. Bang Y, Seo JG, Song IK, Int. J. Hydrog. Energy, 36, 8307 (2011)
  10. Xie M, Zhou Z, Qi Y, Cheng Z, Yuan W, Chem. Eng. J., 207-208, 142 (2012)
  11. Choudhary TV, Goodman DW, Catal. Today, 77, 65 (2002)
  12. Hosseini SE, Wahid MA, Renew. Sust. Energ. Rev., 57, 850 (2016)
  13. Nikolaidis P, Poullikkas A, Renew. Sust. Energ. Rev., 67, 597 (2017)
  14. Speight JG, in 6 - Gasification processes for syngas and hydrogen production, Luque R, Speight JG Eds., pp. 119-146, Woodhead Publishing, (2015).
  15. Souza MMVM, Schmal M, Appl. Catal. A: Gen., 281, 19 (2005)
  16. Eriksson S, Rojas S, Boutonnet M, Fierro JLG, Appl. Catal. A: Gen., 326, 8 (2007)
  17. Barroso-Quiroga MM, Castro-Luna AE, Int. J. Hydrog. Energy, 35, 6052 (2010)
  18. Dincer I, Acar C, Int. J. Hydrog. Energy, 40, 11094 (2015)
  19. Chen CH, Yu CT, Chen WH, Int. J. Hydrog. Energy, 46, 16655 (2021)
  20. Rostrup-Nielsen JR, Sehested J, in Whisker Carbon Revisited, Spivey JJ, Roberts GW, Davis BH Eds., pp. 1-12, Elsevier, (2001).
  21. Craciun R, Daniel Wl, Knözinger H, Appl. Catal. A: Gen., 230, 153 (2002)
  22. Halabi MH, de Croon MHJM, van der Schaaf J, Cobden PD, Schouten JC, Appl. Catal. A: Gen., 389, 68 (2010)
  23. Amjad UES, Quintero CWM, Ercolino G, Italiano C, Vita A, Specchia S, Ind. Eng. Chem. Res., 58, 16395 (2019)
  24. Lai GH, Lak JH, Tsai DH, ACS Appl. Energy Mater., 2, 7963 (2019)
  25. Oh YS, Roh HS, Jun KW, Baek YS, Int. J. Hydrog. Energy, 28, 1387 (2003)
  26. Tan M, Yang Y, Wang X, Huang H, Zou X, Lu X, ChemistrySelect, 5, 2482 (2020)
  27. Karthik GM, Buwa VV, AIChE J., 63, 366 (2017)
  28. Bai H, Theuerkauf J, Gillis PA, Witt PM, Ind. Eng. Chem. Res., 48, 4060 (2009)
  29. Xu J, Froment GF, AIChE J., 35, 97 (1989)
  30. Cho EH, Koo KY, Lee HW, Park YK, Yoon WL, Ko CH, Int. J. Hydrog. Energy, 42, 18350 (2017)
  31. Cho E, Yu YJ, Kim Y, Phan TN, Park D, Ko CH, Catal. Today, 352, 157 (2020)
  32. Kim Y, Cho E, Ko CH, Int. J. Hydrog. Energy, 44, 5314 (2019)
  33. Pashchenko D, Energy Conv. Manag., 185, 465 (2019)
  34. Zhang X, Peng L, Fang X, Cheng Q, Liu W, Peng H, Gao Z, Zhou W, Wang X, Int. J. Hydrog. Energy, 43, 8298 (2018)
  35. Wang K, Li X, Ji S, Shi X, Tang J, Energy Fuels, 23, 25 (2009)
  36. Yuan Q, Yin AX, Luo C, Sun LD, Zhang YW, Duan WT, Liu HC, Yan CH, J. Am. Chem. Soc., 130, 3465 (2008)
  37. Ma Q, Han Y, Wei Q, Makpal S, Gao X, Zhang J, Zhao TS, J. CO2 Util., 35, 288 (2020)
  38. Kim H, Lee YH, Lee H, Seo JC, Lee K, Catalysts, 10 (2020)
  39. Rozita Y, Brydson R, Scott AJ, J. Phys. Conf. Ser., 241 (2010)
  40. Cheng MY, Pan CJ, Hwang BJ, J. Mater. Chem., 19, 5193 (2009)
  41. Yao L, Galvez ME, Hu C, Da Costa P, Int. J. Hydrog. Energy, 42, 23500 (2017)
  42. Richardson JT, Propp JL, J. Catal., 98, 457 (1986)
  43. Zhao A, Ying W, Zhang H, Ma H, Fang D, Catal. Commun., 17, 34 (2012)
  44. Zeng Y, Ma H, Zhang H, Ying W, Fang D, Fuel, 137, 155 (2014)
  45. Kim P, Joo JB, Kim H, Kim W, Kim Y, Song IK, Yi J, Catal. Lett., 104, 181 (2005)
  46. Kim P, Kim Y, Kim C, Kim H, Park Y, Lee JH, Song IK, Yi J, Catal. Lett., 89, 185 (2003)
  47. Meloni E, Martino M, Palma V, Catalysts, 10 (2020)
  48. Tsyganok AI, Tsunoda T, Hamakawa S, Suzuki K, Takehira K, Hayakawa T, J. Catal., 213, 191 (2003)
  49. Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB, Appl. Catal. A: Gen., 340, 183 (2008)
  50. Kim WY, Lee BJ, Park H, Choi YH, Kim JH, Lee JS, ChemCatChem, 10, 2214 (2018)