Polymer(Korea), Vol.46, No.2, 171-178, March, 2022
뼈-인대 재생을 위한 경질 및 연질 구획을 갖는 생분해성 폴리우레탄 지지체
Biodegradable Polyurethane Scaffolds with Hard and Soft Compartments for Potential Bone-to-tendon Regeneration
E-mail:
초록
뼈-힘줄 재생을 위해 양 끝에 뻣뻣한 구획과 유연한 구획을 갖는 폴리카프로락톤 기반 폴리우레탄 스캐폴드를 제작하였다. 폴리카프로락톤디올과 디이소시아네이트의 비율이 다른 수분산 폴리우레탄을 합성하여 스캐폴드의 양 끝이 각 구획에 적합한 인장 특성을 갖도록 제어하였다. 두 개의 구획이 있는 3차원 인쇄 폴리우레탄/폴리카프로락톤 스캐폴드는 염화칼슘에 의해 이온 가교되었고 스캐폴드의 딱딱한 구획은 교체 침지 방법을 사용하여 수산화인 회석으로 개질하였다. 시험관 내 테스트에서 스캐폴드의 딱딱한 구획에서 조골 세포(MC3T3-E1)의 더 높은 증식 속도와 알칼리인산분해효소(ALP) 활성을 가지는 것을 확인하였으며, 근세포(C2C12)는 모든 구획에서 잘 증식하였다. 제어된 다공성 구조와 기계적 특성을 가지도록 3차원 인쇄된 폴리우레탄/폴리카프로락톤 스캐폴드는 뼈-인대 및 뼈연골 및 뼈-힘줄의 재생에 대해 광범위하게 응용할 수 있다.
Poly(ε-caprolactone) (PCL)-based polyurethane (PU) scaffolds with hard and soft compartments at either end were fabricated by fused deposition modeling (FDM) technique for potential bone-to-tendon regeneration. WaterbornePU (WBPU) dispersions with different ratios of diisocyanate and PCL diol were synthesized to control the tensile properties suitable for either compartment at the end of the WBPU/PCL scaffolds. The three-dimensionally (3D) printed WBPU/PCL scaffold with two compartments was ionically cross-linked by calcium chloride, while the hard compartment of the scaffolds was further decorated by hydroxyapatite (HAp) using an alternative soaking method. In vitro tests revealed the higher proliferation rate and alkaline phosphatase (ALP) activity of osteoblastic cells (MC3T3-E1) on the hard compartment of the scaffold. Meanwhile, myocytes (C2C12) proliferated well on the soft compartment. We believe that the 3D printed WBPU/PCL scaffolds with controlled porous structure and mechanical property have wide potential applications for bone-to-ligament and bone-to-cartilage, as well as bone-to-tendon.
- Loh QL, Choong C, Tissue Eng. Part B Rev., 19, 485 (2013)
- Ga DH, Lim CM, Jang Y, Son TI, Han DK, Joung YK, Tissue Eng. Regen. Med. (2021)
- Choi SY, Li MX, Kang JH, Yang DH, Joung YK, Surf. Interfaces, 25, 101280 (2021)
- Casarrubios L, Gómez-Cerezo N, Sánchez-Salcedo S, Feito MJ, Serrano MC, Saiz-Pardo M, Ortega L, de Pablo D, Acta Biomater., 101, 544 (2020)
- Ghosh M, Halperin-Sternfeld M, Grigoriants I, Lee J, Nam KT, Adler-Abramovich L, Biomacromolecules, 18, 3541 (2017)
- Tits A, Ruffoni D, Bone Rep., 14, 100742 (2021)
- Lowen JM, Leach JK, Adv. Funct. Mater., 30, 1909089 (2020)
- Spalazzi JP, Boskey AL, Pleshko N, Lu HH, PLoS ONE, 8, e74349 (2013)
- Reddy MS, Ponnamma D, Choudhary R, Sadasivuni KK, Polymer, 13 (2021)
- Abe MM, Martins JR, Sanvezzo PB, Macedo JV, Branciforti MC, Halley P, Botaro VR, Brienzo M, Polymer, 13 (2021)
- George A, Sanjay MR, Srisuk R, Parameswaranpillai J, Siengchin SA, Int. J. Biol. Macromol., 154, 329 (2020)
- Li X, Xie J, Lipner J, Yuan X, Thomopoulos S, Xia Y, Nano Lett., 9, 2763 (2009)
- Venkatesan J, Vinodhini PA, Sudha PN, Kim SK, Adv. Food Nutr. Res., 73, 59 (2014)
- Ameer JM, Pr AK, Kasoju N, J. Funct. Biomater, 10, 30 (2019)
- Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R, Biomaterials, 17, 1417 (1996)
- Sin D, Miao X, Liu G, Wei F, Chadwick G, Yan C, Friis T, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 30, 78 (2010)
- Lee SB, Kim YH, Chong MS, Hong SH, Lee YM, Biomaterials, 26, 1961 (2005)
- Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J, Acta Biomater., 6, 1167 (2010)
- Ma PX, Zhang R, J. Biomed. Mater. Res., 56, 469 (2001)
- Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna SA, J. Regen. Med. Tissue Eng., 10, 715 (2016)
- Yan R, Jin B, Luo Y, Li X, Polym. Chem., 10, 2247 (2019)
- Jang JY, Jhon YK, Cheong IW, Kim JH, Colloids Surf. A: Physicochem. Eng. Asp., 196, 135 (2002)
- Santamaria-Echart A, Arbelaiz A, Saralegi A, Fernándezd’Arlas B, Eceiza A, Corcuera MA, Colloids Surf. A: Physicochem. Eng. Asp., 482, 554 (2015)
- Athawale VD, Kulkarni MA, J. Appl. Polym. Sci., 117, 572 (2010)
- García-Pacios V, Iwata Y, Colera M, Miguel Martín-Martínez J, Int. J. Adhes. Adhes., 31, 787 (2011)