Journal of Industrial and Engineering Chemistry, Vol.105, 259-267, January, 2022
Preparation and electrochemical activity of platinum catalyst-supported graphene and Fe-based metal-organic framework composite electrodes for fuel cells
E-mail:
Platinum catalysts supported on reduced graphene oxide (rGO) and an N-doped iron-based metal-organic framework (Fe-MOF) composite were prepared, and their activity was analyzed. The Pt-rGO/Fe-MOF composites were synthesized using hydrothermal and polyol processes in a Teflon-lined autoclave. Electroactivities were measured by cyclic voltammetry and chronoamperometry, and morphological analysis was performed using field emission scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The composite material provides a small particle size, homogeneous dispersion, large adsorption area of platinum and it is used as an effective electron and proton transport path, so exhibits high electrochemical surface area and excellent methanol oxidation performance. The electrochemical properties of PtrGO/ Fe-MOF are better than those of Pt-rGO or pristine Pt-(Fe-MOF), which demonstrates that rGO/Fe- MOF could be used as a promising catalyst support for direct methanol fuel cells.
- Winter M, Brodd RJ, Chem. Rev., 104(10), 4245 (2004)
- Pushparaj VL, et al., Proceedings of the National Academy of Sciences, 104, 13574 (2007).
- Raza R, Akram N, Javed MS, Rafique A, Ullah K, Ali A, Saleem M, Ahmed R, Renew. Sust. Energ. Rev., 53, 450 (2016)
- Kim BH, Park HS, Kim HJ, Kim GT, Chang IS, Lee J, Phung NT, Appl. Microbiol. Biotechnol., 63(6), 672 (2004)
- Zhang L, Zhang XF, Chen XL, Wang AJ, Han DM, Wang ZG, Feng JJ, J. Colloid Interface Sci., 536, 556 (2019)
- Yu DX, Wang AJ, He LL, Yuan JH, Wu L, Chen JR, Feng JJ, Electrochim. Acta, 213, 565 (2016)
- Zheng JN, Li SS, Ma X, Chen FY, Wang AJ, Chen JR, Feng JJ, J. Power Sources, 262, 270 (2014)
- Sharma S, Pollet BG, J. Power Sources, 208, 96 (2012)
- Iijima S, Nature, 354, 56 (1991)
- Huang YY, Fu F, Wu P, Wang YB, Yao JN, J. Power Sources, 268, 591 (2014)
- Yang F, Zhang B, Dong S, Wang C, Feng A, Fan X, Li Y, Journal of Energy Chemistry, 29, 72 (2019).
- Zhang B, Yang F, Zhang X, Wu N, Liu B, Li Y, ACS Sustainable Chem. Eng., 9, 1352 (2021)
- Zhang B, Yang F, Liu HC, Yan LN, Yang W, Xu C, Huang S, Li Q, Bao WJ, Liu B, Li Y, Ind. Eng. Chem. Res., 58(42), 19486 (2019)
- Yang F, Zhang B, Dong S, Tang YS, Hou LQ, Chen Z, Li ZH, Yang W, Xu C, Wang MJ, Li Y, Li YF, Appl. Surf. Sci., 452, 11 (2018)
- Park J, Kim S, J. Electrochem. Soc., 161(4), F518 (2014)
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
- Reddy S, Song L, Kang L, Feng Q, Du R, Zhang J, He L, Seeram R, Carbon Letters, 29, 225 (2019)
- Geim AK, Novoselov KS, World Scientific, 2010, pp. 11-19. (https://doi.org/10.1038/nnano.2010.224).
- Caraman M, Lazar G, Stamate M, Lazar I, Rom J Phys, 53, 273 (2006)
- Kwon SS, Jung Y, Kim S, J. Nanosci. Nanotechnol., 16, 8598 (2016)
- Song C, Kim S, J. Electrochem. Soc., 162(10), F1181 (2015)
- Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
- Xu YX, Bai H, Lu GW, Li C, Shi GQ, J. Am. Chem. Soc., 130(18), 5856 (2008)
- Liu G, Shi Y, Wang L, Song Y, Gao S, Liu D, Fan L, Carbon Letters, 30, 389 (2020)
- Bae JH, Park JH, Seo MK, Kim S, J. Alloy. Compd., 822, 153586 (2020)
- Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano, 4, 4806 (2010)
- Pu J, Wan S, Zhao W, Mo Y, Zhang X, Wang L, Xue Q, J. Phys. Chem. C, 115, 13275 (2011)
- Tan B, Thomas NL, J. Membr. Sci., 514, 595 (2016)
- Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT, Chem. Soc. Rev., 38, 1450 (2009)
- Rowsell JL, Yaghi OM, Microporous Mesoporous Mater., 73, 3 (2004)
- Jahan M, Liu Z, Loh KP, Adv. Funct. Mater., 23, 5363 (2013)
- Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT, Chem. Rev., 112(2), 1105 (2012)
- Bae JH, Jung Y, Kim S, J. Nanosci. Nanotechnol., 19, 4661 (2019)
- Cui FY, Wang WY, Liu CN, Chen XY, Li N, Int. J. Energy Res., 44(6), 4426 (2020)
- Llewellyn PL, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, De Weireld G, Chang JS, Hong DY, Hwang YK, Jhung SH, Ferey G, Langmuir, 24(14), 7245 (2008)
- El-Shall MS, Abdelsayed V, Abd El Rahman SK, Hassan HM, El-Kaderi HM, Reich TE, J. Mater. Chem., 19, 7625 (2009)
- Yun R, Hong L, Ma W, Jia W, Liu S, Zheng B, ChemCatChem, 11, 724 (2019)
- Ru C, Gu Y, Na H, Li H, Zhao C, ACS applied materials interfaces, 11, 31899 (2019)
- Woo JH, Park SJ, Chung S, Kim S, Carbon Letters, 29, 47 (2019)
- Hu W, Wang Q, Wu S, Huang Y, J. Mater. Chem. A, 4, 16920 (2016)
- Fu J, Wang X, Wang T, Zhang J, Guo S, Wu S, Zhu F, ACS applied materials interfaces, 11, 33238 (2019)
- Yue Q, Wang M, Sun Z, Wang C, Wang C, Deng Y, Zhao D, J. Mater. Chem. B, 1, 6085 (2013)
- Zhang XK, Huang XB, Hu WH, Huang YM, Int. J. Hydrog. Energy, 44(50), 27379 (2019)
- Variava MF, Church TL, Harris AT, Minett AI, J. Mater. Chem. A, 1, 8509 (2013)
- Yumitori S, J. Mater. Sci., 35(1), 139 (2000)
- Alderucci V, Pino L, Antonucci P, Roh W, Cho J, Kim H, Cocke D, Antonucci V, Mater. Chem. Phys., 41, 9 (1995)
- Zalomaeva OV, Kovalenko KA, Chesalov YA, et al., Dalton Transactions, 40, 1441 (2011)
- Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J, Jiricek P, Bieloshapka I, J. Electron. Spectrosc. Relat. Phenom., 195, 145 (2014)
- Mukerjee S, Srinivasan S, Soriaga MP, Mcbreen J, J. Phys. Chem., 99(13), 4577 (1995)
- Monshi A, Foroughi MR, Monshi MR, World Journal of Nano Science and Engineering, 2, 154 (2012).
- Li WZ, Zhou WJ, Li HQ, Zhou ZH, Zhou B, Sun GQ, Xin Q, Electrochim. Acta, 49(7), 1045 (2004)
- Yang X, Xue J, Feng L, Chem. Commun., 55, 11247 (2019)
- Chung J, Feng L, Liu C, Xing W, Hu X, Science, 7, 1628 (2014)