화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.4, 632-638, November, 2021
아민과 카르복실산이 함유된 수계용액의 구리 배선 공정의 세정특성
Cleaning Behavior of Aqueous Solution Containing Amine or Carboxylic Acid in Cu-interconnection Process
E-mail:
초록
반도체 공정에서 구리 배선 공정의 도입에 따라 플라즈마 식각에 의해 배선의 형성과정에서 구리 산화물, 불화물 및 불화탄소 등을 포함한 복합 잔류물을 형성하게 된다. 본 연구에서는 아민기(-NH2)와 카르복실기(-COOH)를 갖는 성분으로 세정액을 제조하여 구리 배선 공정에서의 식각 잔류물 제거 특성을 분석하였다. 아민기를 포함한 세정액은 질소에 치환된 성분 및 탄소결합의 길이에 따라 세정효과에 차이를 보이며, 세정액의 pH가 증가함에 따라 구리 산화물의 식각 속도가 증가하는 경향성을 보였다. 아민기의 활성은 염기성 영역에서, 카르복실기의 활성은 산성 영역에서 이루어지며, 각각의 영역에서 구리 또는 구리 산화물과의 complex 형성을 통하여 세정공정이 진행되었다.
With the copper interconnection in the semiconductor process, complex residues including copper oxide, fluoride, and polymeric fluorocarbon are formed by plasma etching. In this study, a cleaning solution was prepared with a component having an amine group (-NH2) and a carboxyl group (-COOH), and the characteristics of removing postetch residues in the copper wiring process were analyzed. In the cleaning solution containing an amine group, the length of the component substituted with nitrogen and the length of the carbon chain influenced the cleaning effect, and the etching rate of copper oxide increased as the pH of the cleaning solution increased. The activity of the amine group is in the basic region, and the activity of the carboxyl group is in the acidic region, and the cleaning process proceeds through complex formation with copper or copper oxide in each region.
  1. Ryan JG, Geffken RM, Poulin NR, Paraszczak JR, IBM J. Res. Dev., 39(4), 371 (1995)
  2. Murarka SP, Hymes SW, Crit. Rev. Solid State Mater. Sci., 20, 87 (1995)
  3. Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H, IBM J. Res. Dev., 42(5), 567 (1998)
  4. Wang Y, Graham SW, Chan L, Loong ST, J. Electrochem. Soc., 144(4), 1522 (1997)
  5. Judge JS, J. Electrochem. Soc., 118, 1772 (1971)
  6. Imura T, Mogi K, Hiraki A, Nakashima S, Mitsuishi A, Solid State Commun., 40(2), 161 (1981)
  7. Trucks GW, Raghavachari K, Higashi GS, Chabal YJ, J. Phys. Rev. Lett., 65(4), 504 (1990)
  8. Ko C, Lee WG, Korean Chem. Eng. Res., 54(4), 548 (2016)
  9. Roberge PR, “Handbook of Corrosion Engineering,” 1st ed., 500-502, McGraw-Hill, NY, USA(2000).
  10. Ko CK, Lee WG, Surf. Interface Anal., 44, 94 (2012)
  11. Aksu S, Doyle FM, J. Electrochem. Soc., 149(7), B340 (2002)
  12. Sircar SC, Wiles DR, J. Electrochem. Soc., 107, 164 (1960)
  13. Ko CK, Lee WG, Surf. Interface Anal., 42, 1128 (2010)
  14. Macdougall J, Reid C, McGhee L, Solid State Phenom., 134, 329 (2008)
  15. Gorantla VRK, Goia D, Matijevic E, Babu SV, J. Electrochem. Soc., 152(12), G912 (2005)
  16. Gorantla VRK, Goia D, Matijevic E, Babu SV, Chem. Mater., 17(8), 2076 (2005)
  17. Hernandez J, Wrschka P, Oehrlein GS, J. Electrochem. Soc., 148(7), B389 (2001)
  18. Carter MK, Small R, Cernat M, Hansen B, J. Electrochem. Soc., 150(2), B52 (2003)