화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.4, 626-631, November, 2021
공간 제약 효과에 따른 전기와류 불안정성의 동역학 전이
Dynamics Transition of Electroconvective Instability Depending on Confinement Effect
E-mail:
초록
전기투석장치, 전기화학 전지, 미세유체역학 분석 장치 등에서 사용하는 이온 교환 막 근처의 대표적인 비선형 전기동역학 현상은 전기와류 불안정성이다. 전기투석 장치에서 전기와류 불안정성은 물질 전달 속도 증폭을 통해 물질 전달에 대한 이점을 제공한다. 그러나 전기화학 전지나 미세유체역학 장치에서 발생하는 불안정성은 원치 않는 물질 전달 기작을 유발시킨다. 본 연구에서는 전기와류 불안정성의 제어하기 위해, 인가 전압과 공간 제약 효과의 전기와류 불안정성에 대한 영향을 연구하였다. 그 결과, 인가 전압과 공간 제약의 정도에 따라 불안정성의 동역학이 안정 영역 - 고정 영역 . 혼돈 영역 순으로 전이됨을 밝혀내었다. 더불어, 동역학 전이에 대한 안정성 곡선을 수치적으로 결정하였다. 결론적으로, 공간 제약 효과는 전기동역학적 혼돈을 제어할 수 있는 효과적인 기작으로 활용 가능할 것이다.
One of the nonlinear electrokinetic phenomena around ion exchange membrane is electroconvective instability which can be found in various electrokinetic applications such as electrodialysis, electrochemical battery, microfluidic analysis platform, etc. Such instability acts as a positive transport mechanism for the electrodialysis via amplifying mass transport rate. On the other hands, in the electrochemical battery and the microfluidic applications, the instability provokes unwanted mass transport. In this research, to control the electroconvective instability, the onset of the instability was analyzed as a function of confinement effect as well as applied voltage. As a result, we figured out that the dynamic behavior of electroconvective instability transited as a sequence of stable regime - static regime - chaotic regime depending on the applied voltage and confinement effect. Furthermore, stability curves about the dynamic transition were numerically determined as well. Conclusively, the confinement effect on electroconvective instability can be applied for effective means to control the electrokinetic chaos.
  1. Kwak R, Pham VS, Lim KM, Han J, Phys. Rev. Lett., 110, 114501 (2013)
  2. Bai P, Li J, Brushett FR, Bazant MZ, Energy & Environmental Science, 9, 3221 (2016).
  3. Kim SJ, Song YA, Han J, Chem. Sov. Rev., 39, 912 (2010)
  4. Rubinstein I, Zaltzman B, Phys. Rev. E, 62, 2238 (2000)
  5. Kim SJ, Wang YC, Lee JH, Jang H, Han J, Phys. Rev. Lett., 99, 044501 (2007)
  6. Pham VS, Li Z, Lim KM, White JK, Han J, Phys. Rev. E, 86, 046310 (2012)
  7. Druzgalski CL, Andersen MB, Mani A, Phys. Fluids, 25, 110804 (2013)
  8. Demekhin EA, Nikitin NV, Shelistov VS, Phys. Fluids, 25, 122001 (2013)
  9. Yang KD, et al., Angew. Chem.-Int. Edit., 56, 796 (2017)
  10. Lee HM, Korean Chem. Eng. Res., 57(5), 735 (2019)
  11. Kwak R, Pham VS, Han J, J. Fluid Mech., 813, 799 (2017)
  12. Kim M, Wu L, Kim B, Huang DT, Han J, Anal. Chem., 90, 872 (2018)
  13. Rubinstein I, Zaltzman B, Math. Models Methods Appl. Sci., 11, 263 (2001)
  14. Schiffbauer J, Demekhin EA, Ganchenko G, Phys. Rev. E, 85, 055302 (2012)
  15. Andersen MB, Wang KM, Schiffbauer J, Mani A, Electrophoresis, 38(5), 702 (2017)
  16. Lee HM, Korean Chem. Eng. Res., 58(2), 319 (2020)
  17. Schoch RB, Han J, Renaud P, Rev. Mod. Phys., 80, 839 (2008)