- Previous Article
- Next Article
- Table of Contents
Journal of Industrial and Engineering Chemistry, Vol.103, 381-391, November, 2021
Anticancer activities of bioactive peptides derived from rice husk both in free and encapsulated form in chitosan
E-mail:
Cereal grain-derived protein hydrolysates exert beneficial effects for human health, thus utilization of byproducts with high protein content has drawn attention. In this study, hot water extraction of rice husk has been optimized to obtain protein hydrolysate with the highest anticancer activity. The optimum protein value was obtained as 2.40 g/L corresponding to 43.2 g protein/kg dried rice husk under the conditions of 60 °C, 2.0 mL/min flow rate and pH 10.0. The protein hydrolysate was encapsulated with chitosan, where the mean particle size of protein hydrolysate (0.3 %) loaded chitosan nanoparticles was 256.4 ± 33. 4 nm with 89 % encapsulation efficiency and a 65% release at the end of 6 days. Cytotoxicity assays showed that the lowest cell viabilities have been achieved with A549 and MCF7 cells with IC50 values of 1.98 and 3.58 μg/mL, respectively, whereas nuclear fragmentation and apoptotic bodies were observed through Hoechst 33342 staining. The cytotoxic effect might be associated with the wide variety of peptide/ protein subunits ranging from 10 kDa to more than 180 kDa in the protein hydrolysate of rice husk.
- Alvarez J, Lopez G, Amutio M, Bilbao J, Olazar M, Fuel, 128, 162 (2014)
- Bodie AR, Micciche AC, Atungulu GG, Rothrock MJ, Ricke SC, Front. Sustain. Food Syst., 3, 47 (2019)
- Hasan R, Chong CC, Bukhari SN, Jusoh R, Setiabudi HD, J. Ind. Eng. Chem., 75, 262 (2019)
- Song S, Cho HB, Kim HT, J. Ind. Eng. Chem., 61, 281 (2018)
- Chun JY, Gu YM, Hwang JK, Oh KK, Lee JH, J. Ind. Eng. Chem., 81, 135 (2020)
- Phonphuak P, Chindaprasirt, Eco-Efficient Masonry Bricks and Blocks, Elsevier, 103 (2015).
- Yu Y, Zhang J, Wang J, Sun B, RSC Adv., 9, 18060 (2019)
- Dei Piu’ L, Tassoni A, Serrazanetti DI, Ferri M, Babini E, Tagliazucchi D, Gianotti A, Food Chem., 155, 199 (2014)
- Nwachukwu ID, Aluko RE, J. Food Bioact., 7, 18 (2019)
- Ferri M, Graen-Heedfeld J, Bretz K, Guillon F, Michelini E, Calabretta MM, Lamborghini M, Gruarin N, Roda A, Kraft A, Tassoni A, PLoS One, 12(1) (2017)
- Chalamaiah M, Yu W, Wu J, Food Chem., 245, 205 (2018)
- Kannan A, Hettiarachchy NS, Lay JO, Liyanage R, Peptides, 31, 1629 (2010)
- Correa APF, Daroit DJ, Coelho J, Meira SM, Lopes FC, Segalin J, Risso PH, Brandelli A, J. Sci. Food Agric., 91(12), 2247 (2011)
- Sereewatthanawut I, Prapintip S, Watchiraruji K, Goto M, Sasaki M, Shotipruk A, Bioresour. Technol., 99(3), 555 (2008)
- Kazan A, Celiktas MS, Sargin S, Yesil-Celiktas O, Energy Conv. Manag., 103, 366 (2015)
- Uyan M, Alptekin FM, Cebi D, Celiktas MS, Fuel, 273 (2020)
- Yildiz-Ozturk E, Tag O, Yesil-Celiktas O, J. Supercrit. Fluids, 95, 422 (2014)
- Coban I, Sargin S, Celiktas MS, Yesil-Celiktas O, Bioresour. Technol., 120, 52 (2012)
- Haq M, Ho TC, Ahmed R, Getachew AT, Cho YJ, Park JS, Chun BS, J. Ind. Eng. Chem., 81, 332 (2020)
- Kazan A, Yesil-Celiktas O, Zhang YS, Macromol. Biosci., 19(11), 190018 (2019)
- Adhikari HS, Yadav PN, Int. J. Biomater., 2018, 1 (2018)
- Gadkari RR, Gupta A, Teke U, Awadhiya A, Shahadat M, Ali W, Das A, Alagirusamy R, J. Ind. Eng. Chem., 99, 214 (2021)
- Sekar V, Rajendran K, Vallinayagam S, Deepak V, Mahadevan S, J. Ind. Eng. Chem., 62, 239 (2018)
- Celiktas MS, Kirsch C, Smirnova I, Energy Conv. Manag., 84, 633 (2014)
- Sari DRT, Safitri A, Cairns JRK, Fatchiyah F, J. Phys. Conf. Ser., 1146 (2019)
- Aderolu A, Iyayp E, Onilude A, Bulg. J. Agric. Sci., 13, 583 (2007)
- Islam MN, Jo YT, Jung SK, Park JH, Water. Air. Soil Pollut., 224, 1652 (2013)
- Plaza M, Turner C, Rends, Anal. Chem., 71, 39 (2015)
- Phaiboonsilpa N, Ogura M, Yamauchi J, Rabemanolontsoa H, Saka S, Ind. Crop. Prod., 49, 484 (2013)
- Santos KFDecN, Silveira RDD, Martin-Didonet CCG, Brondani C, Pesqui. Agropecu Bras., 48, 66 (2013)
- Chandi CK, Sogi DS, Int. J. Food Sci. Technol., 42(11), 1357 (2007)
- Amagliani L, O’Regan J, Kelly AL, O’Mahony JA, J. Food Compos. Anal., 59, 18 (2017)
- Zhang X, Wang L, Chen Z, Li Y, Luo X, Li Y, RSC Adv., 9, 13550 (2019)
- Xie J, Du M, Shen M, Wu T, Lin L, Food Chem., 270(235), 243 (2019)
- Xue Z, Gao J, Zhang Z, Yu W, Wang H, Kou X, Plant Foods Hum. Nutr., 67(4), 393 (2012)
- Song R, Wei R, Zhang B, Yang Z, Wang D, Mar. Drugs, 9, 1142 (2011)
- Huerta-Ocampo JA, de la Rosa APB, Curr. Nutr. Food Sci., 7(1), 1 (2011)
- Ramkisson S, Dwarka D, Venter S, Mellem JJ, Food Sci. Technol., 40, 634 (2020)
- Karami Z, Peighambardoust SH, Hesari J, Akbari-Adergani B, Andreu D, Food Biosci., 32 (2019)
- Chen HM, Lai ZQ, Liao HJ, Xie JH, Xian YF, Chen YL, Ip SP, Lin ZX, Su ZR, Int. J. Mol. Med., 41(3), 1447 (2018)
- Jiang HF, Wu Z, Bai X, Zhang Y, He P, Oncol. Lett., 8(3), 1139 (2014)
- Valente MJ, Bastos MDL, FernandesE, Carvalho F, De Pinho PG, Carvalho M, ACS Chem Neurosci., 8(4), 850 (2017)
- Jeyaraj M, Sathishkumar G, Sivanandhan G, et al., Colloids Surf. B: Biointerfaces, 106, 86 (2013)
- Sharifi F, Yesil-Celiktas O, Kazan A, Maharjan S, Saghazadeh S, Firoozbakhsh K, Firoozabadi B, Zhang Y, Bio-Design Manuf., 3, 189 (2020)
- Fernandes LL, Resende CX, Tavares DS, Soares GA, Castro LO, Granjeiro JM, Polimeros, 21(1), 1 (2011)
- Ma’Ruf A, Pramudono B, Aryanti N, AIP Conf. Proc. (1823 (2017)).
- Daffalla SB, Mukhtar H, Shaharun MS, J. Appl. Sci., 10(12), 1060 (2010)
- Srivastava VC, Mall ID, Mishra IM, J. Hazard. Mater., 134(1-3), 257 (2006)
- Gan Q, Wang T, Colloids Surf. B: Biointerfaces, 59, 24 (2007)
- Samani SE, Seraj Z, Naderimanesh H, Khajeh K, Rastaghi ARE, Droudi T, Kolivand P, Kazemi H, Asghari SM, Chem. Biol. Drug Des., 90(3), 417 (2017)
- Flodrova D, Toporova L, Macejova D, Lastovickova M, Brtko J, Bobalova J, Gen. Physiol. Biophys., 35, 387 (2016)
- Huang M, Ma Z, Khor E, Lim LY, Pharm. Res., 19(10), 1488 (2002)