Applied Chemistry for Engineering, Vol.32, No.5, 569-573, October, 2021
고밀도화 탄소 블록 제조 시 콜타르계 피치의 점도가 함침에 미치는 영향
Effect of Coal Tar Pitch Viscosity on Impregnation for Manufacture of Carbon Blocks with High Density
E-mail:,
초록
본 연구에서는 코크스, 바인더 피치 및 함침 피치를 사용하여 고밀도 탄소 블록을 제조하고, 함침 공정 시 피치의 유동성이 탄소 블록의 고밀도화에 미치는 영향을 고찰하였다. 코크스와 바인더 피치의 고압 성형을 통해 그린블록을 제조하고 열처리 공정을 통하여 탄소 블록을 얻었다. 열처리 공정 시 바인더 피치의 휘발에 의해 생성된 기공을 제거하고자 함침 공정을 진행하였다. 함침 공정은 함침 피치를 용융하는 전처리 단계와 피치를 탄소 블록에 함침하는 고압 반응 단계로 나누어 진행하였다. 함침 피치의 용융은 140~200 ℃에서 진행하였으며, 열처리 온도가 증가할수록 함침 피치의 점도가 감소하였다. 함침 피치의 점도 감소는 유동성을 향상시켜 탄소 블록 내부 기공을 효율적으로 함침하여 탄소 블록의 기공률을 83% 감소시켰고 겉보기 밀도를 5% 상승시켰다.
In this study, high-density carbon blocks were manufactured using coke, binder pitch, and impregnated pitch, then the effect of pitch fluidity on the densification of carbon blocks during the impregnation process was investigated. A green block was manufactured through high-pressure figuration of coke and binder pitch, and a carbon block was obtained through a heat treatment process. An impregnation process was performed to remove pores generated by volatilization of the binder pitch during the heat treatment process. The impregnation process was carried out the high-pressure reaction step of impregnating the pitch into the carbon block followed by the pretreatment step of melting the impregnation pitch. Melting of the impregnation pitch was carried out at 140~200 ℃, and the viscosity of the impregnation pitch decreased as the heat treatment temperature increased. The decrease in the viscosity of the impregnation pitch improved the fluidity and effectively impregnated the pores inside the carbon block, reducing the porosity of the carbon block by 83% and increasing the apparent density by 5%.
- Xiaowei L, Jean-Charles R, Suyuan Y, Nucl. Eng. Des., 227, 273 (2004)
- Brisson PY, Darmstadt H, Fafard M, Adnot A, Servant G, Soucy G, Carbon, 44, 1438 (2006)
- Chin-Tu L, Bryant MD, Wear, 174, 137 (1994)
- Ding T, Chen G, Bu J, Zhang W, Wear, 271, 1629 (2011)
- Lin JW, Chang HC, Tribol. Trans., 54, 887 (2011)
- Liu Z, Zhang J, Zuo H, Yang T, ISIJ Int., 52, 1713 (2012)
- Li M, Zhou Y, Liao Y, Zhou H, Carbon, 130, 295 (2018)
- Li Q, Guo Y, Li W, Qiu S, Zhu C, Wie X, Chen M, Liu C, Liao S, Gong Y, Chem. Mater., 26, 4459 (2014)
- Tiwari N, Agarwal N, Roy D, Mukhopadhyay K, Prasad NE, Ind. Eng. Chem. Res., 56(3), 672 (2017)
- Fitzer E, Carbon, 25, 163 (1987)
- Pierson HO, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications, William Andrew, Norwich (2012).
- nagaki M, Kang F, Materials science and engineering of carbon:fundamentals, Butterworth-Heinemann, Oxford, (2014).
- Choi JE, Ko S, Jeon YP, Carbon Lett., 29, 1 (2019)
- Lee JC, Shin KS, Lee DY, Kim BG, Shim SJ, Lim YS, Chung YJ, J. Korean Ceram. Soc., 32, 989 (1995)
- Matzinos PD, Patrick JW, Walker A, Carbon, 34, 639 (1996)
- Menendez R, Fernendez JJ, Bermejo J, Cebolla V, Mochida I, Korai Y, Carbon, 34, 895 (1996)
- Kim JH, Jo AY, Choi YJ, Lee KB, Im JS, Bai BC, J. Mater. Res. Technol., 9, 16513 (2020)