화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.4, 379-384, August, 2021
3D 프린팅을 이용한 마이크로니들 제작의 최신 연구 동향
Recent Research Trend in Microneedle Fabrication Using 3D Printing
E-mail:
초록
마이크로니들은 약물전달 및 진단에 사용되는 미세바늘로 일반 주사와 달리 길이가 짧아 효과적으로 약물을 전달하는 한편 고통과 감염위험은 최소화시킬 수 있는 도구이다. 기존의 마이크로니들은 MEMS 기술을 기반으로 정밀하게 나노미터 수준으로 제작되었으나 장비와 유지비가 비싸고 공정이 복잡하여, 최근에는 3D 프린팅을 이용해 경제적이고 간단하며 신속하게 마이크로니들을 제작하는 연구가 진행 중이다. 3D 프린팅 기술은 프로토타입의 제작이 간단하고 수정 보완이 용이하기 때문에 마이크로니들 의약품 및 화장품의 상용화에 유리하다. 이에 본 총설은 SLA, 2PP, DLP, CLIP, FDM 3D 프린팅 기술에 대해 소개하고, 이를 이용한 마이크로니들 제작 연구동향에 대해 소개하고자 한다. 또한 현재 마이크로니들 기술의 한계점과 앞으로 해결해야 할 부분에 대해서 논해보고자 한다.
A microneedle is a tool that used for drug delivery and diagnosis. Unlike general injections, the microneedle is short in length, enabling effective drug delivery while minimizing pain and risk of infection. Conventionally, microneedles have been manufactured precisely at a nanometer level based on microelectro mechanical systems (MEMS) technology, requiring expensive equipments & maintenance and complicated processes. To address the issues, 3D printing research has been conducted to fabricate microneedles simply, economically, and rapidly. Since 3D printing facilitates to manufacture prototypes and apply feedbacks, it is advantageous for the development and commercialization of microneedle for pharmaceuticals and cosmetics. Therefore, this review will introduce stereolithography (SLA), two-photon polymerization (2PP), dynamic light processing (DLP), continuous liquid interface production (CLIP), and fused deposition modeling (FDM) 3D printing technologies and also highlight research trends for microneedle production using them. Furthermore, the limitation of the current microneedle technology and the direction to be solved in the future will be discussed.
  1. Kim Y, Park J, Prausnitz MR, Adv. Drug Deliv. Rev., 64, 1547 (2012)
  2. Gill HS, Soderholm J, Prausnitz MR, Sallberg M, Gene Ther., 17, 811 (2010)
  3. Wang PM, Cornwell M, Hill J, Prausnitz MR, J. Invest. Dermatol., 126, 1080 (2006)
  4. Jung J, Jin S, Int. J. Pharm. Investig., 1 (2021).
  5. Lee J, Praunistz MR, Expert Opin. Drug Deliv., 15, 541 (2018)
  6. Praunistz MR, Annu. Rev. Chem. Biomol. Eng., 8, 177 (2017)
  7. Roxhed N, Griss P, Stemme G, J. Micromech. Microeng., 17, 1087 (2007)
  8. Economidou SN, Douroumis D, Adv. Drug Deliv. Rev., 173, 60 (2021)
  9. Larraneta E, Lutton REM, Woolfson AD, Donnelly RF, Mater. Sci. Eng. R-Rep., 104, 1 (2016)
  10. Halder J, Gupta S, Kumari R, Das Gupta G, Rai VK, J. Pharm. Innov., 1 (2020).
  11. Economidou SN, Lamprou DA, Douroumis D, Int. J. Pharm., 544, 415 (2018)
  12. Allen EA, O’Mahony C, Cronin M, O’Mahony T, Moore AC, Crean AM, Int. J. Pharm., 500, 1 (2016)
  13. Liaw C, Guvendiren M, Biofabrication, 9, 024102 (2017)
  14. Chen RK, an Jin Y, Wensman J, Shih A, Addit. Manuf., 12, 77 (2016)
  15. Nesic D, Durual S, Marger L, Mekki M, Sailer I, Scherrer SS, Bioprinting, 20, e00100 (2020)
  16. Han D, Morde RS, Mariani S, La Mattina AA, Vignali E, Yang C, Barillaro G, Lee H, Adv. Funct. Mater., 30, 190919 (2020)
  17. Chen Z, Lin Y, Lee W, Ren L, Liu B, Liang L, Wang Z, Jiang L, ACS Appl. Mater. Interfaces., 10, 29338 (2018)
  18. Ogundele M, Okafor HK, J. Pharm. Res. Int., 8, 1 (2017)
  19. Schmidleithner C, Kalaskar DM, Stereolithography, 3D Printing, 1-22, IntechOpen, London, UK (2018).
  20. Luzuriaga MA, Berry DR, Reagan JC, Smaldone RA, Gassensmith JJ, Lab Chip, 18, 1223 (2018)
  21. Wu M, Zhang Y, Huang H, Li J, Liu H, Guo Z, Xue L, Liu S, Lei Y, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 117, 111299 (2020)
  22. Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi-Rad HR, RamaKrishna S, Berto F, Int. J. Pharm., 597, 120301 (2021)
  23. Krieger KJ, Bertollo N, Dangol M, Sheridan JT, Lowery MM, O’Cearbhaill ED, Microsyst. Nanoeng., 5, 1 (2019)
  24. Lopez-Ramirez MA, Soto ,F Wang C, Rueda R, Shukla S, et al., Adv. Mater., 32, 190574 (2019)
  25. Amer RI, El-Osaily GH, Bakr RO, El Dine RS, Fayez AM, Sci. Rep., 10, 1 (2020)
  26. Pere CPP, Economidou SN, Lall G, Ziraud C, Boateng JS, Alexander BD, Lamprou DA, Douroumis D, Int. J. Pharm., 544, 425 (2018)
  27. Economidou SN, Pere CPP, Reid A, Uddin MJ, Windmill JF, Lamprou DA, Douroumis D, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 102, 743 (2019)
  28. Yeung C, Chen S, King B, Lin H, King K, Akhtar F, Diaz G, Wang B, Zhu J, Sun W, Biomicrofluidics, 103, 064125 (2019)
  29. Economidou SN, Uddin MJ, Marques MJ, Douroumis D, Sow WT, Li H, Reid A, Windmill JFC, Podoleanu A, Addit. Manuf., 38, 101815 (2021)
  30. Takada K, Sun H, Kawata S, Appl. Phys. Lett., 86, 071122 (2005)
  31. Balmert SC, Carey CD, Falo GD, Sethi SK, Erdos G, Korkmaz E, Falo LD, J. Control. Release, 317, 336 (2020)
  32. Rad ZF, Nordon RE, Anthony CJ, Bilston L, Prewett PD, Arns J, Arns CH, Zhang L, Davies GJ, Microsyst. Nanoeng., 3, 1 (2017)
  33. Cordeiro AS, Tekko IA, Jomaa MH, Vora L, McAlister E, et al., Pharm. Res., 37, 1 (2020)
  34. Plamadeala C, Gosain SR, Hischen F, Buchroithner B, et al., Biomed. Microdevices, 22, 1 (2020)
  35. Johnson AR, Procopio AT, 3D Print. Med., 5, 1 (2019)
  36. El-Sayed N, Vaut L, Schneider M, Eur. J. Pharm. Biopharm., 154, 166 (2020)
  37. Kundu A, Arnett P, Bagde A, Azim N, Kouagou E, Singh M, Rajaraman S, J. Microelectromech. Syst., 29, 685 (2020)
  38. Yao W, Li D, Zhao Y, Zhao Z, Jin G, Liang H, Yang R, Micromachines, 11, 17 (2020)
  39. Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, et a., Science, 347, 1349 (2015)
  40. Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, et al., PLoS One, 11, e01625 (2016)
  41. Caudill CL, Perry JL, Tian S, Luft JC, DeSimone JM, J. Control. Release, 284, 122 (2018)
  42. Bloomquist CJ, Mecham MB, Paradzinsky MD, et al., J. Control. Release, 278, 9 (2018)
  43. George E, Liacouras P, Rybicki FJ, Mitsouras D, Radiographics, 37, 1424 (2017)
  44. Ali R, Mehta P, Arshad MS, Kucuk I, Chang MW, Ahmad Z, AAPS Pharmscitech, 21, 1 (2020)