화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.4, 371-378, August, 2021
박테리아 부착억제 고분자 기반 고체 표면의 항균 코팅 연구 동향
Recent Progress of Antibacterial Coatings on Solid Substrates Through Antifouling Polymers
E-mail:
초록
고체 표면의 박테리아 부착억제를 목적으로 고분자를 이용한 친수성 표면 개질 연구가 주목을 받고 있다. 부착억제 기능은 세포독성이 아닌 작용으로 바이오필름 형성의 초기단계 방지를 목적으로 하며 친수성 또는 이온성 고분자가 도입된 고체 표면은 단백질, 박테리아 등 생물 개체의 부착방지에 효과적이다. 이는 표면에서의 친수층 형성으로 인한 표면 장벽 형성, 고분자 사슬에 의한 반발력과 삼투압성 응력 작용, 그리고 이온성 고분자와 세포 표면의 정전기적 상호작용에 기인한다. 부착억제를 위한 고분자의 표면 도입은 주로 표면 기능기와의 결합을 이용한 접합 방식과 자연 모방 접착 기능기를 활용한 침적 방식으로 이루어지고 있다. 본 총설에서는 표면 도입 시 부착억제 기능을 보이는 대표적인 고분자의 종류, 코팅방법, 및 항균 특성을 소개하고 향후 공공시설, 산업 등으로의 대면적 응용을 위한 고려사항들을 다루고자 한다.
The formation of hydrophilic surface based on polymers has received great attention due to the anti-adhesion of bacteria on solid substrates. Anti-adhesion coatings are aimed at suppressing the initial step of biofilm formation via non-cytotoxic mechanisms, and surfaces applied hydrophilic or ionic polymers showed the anti-adhesion effect for bioentities, such as proteins and bacteria. This is attributed to the formation of surface barrier from hydration layers, repulsions and osmotic stresses from polymer brushes, and electrostatic interactions between ionic polymers and cell surfaces. The antifouling polymer coating is usually fabricated by the grafting method through the bonding with functional groups on surfaces and the deposition method utilizing biomimetic anchors. This mini-review is a summary of representative antifouling polymers, coating strategies, and antibacterial efficacy. Furthermore, we will discuss consideration on the large area surface coating for application to public facilities and industry.
  1. Lichter JA, Van Vliet KJ, Rubner MF, Macromolecules, 42(22), 8573 (2009)
  2. Cho WK, Kang SM, Lee JK, J. Nanosci. Nanotechnol., 14, 1231 (2014)
  3. Lee JK, Kang SM, Yang SH, Cho WK, J. Biomed. Nanotechnol., 11, 2081 (2015)
  4. Cloutier M, Mantovani D, Rosei F, Trends in Biotechnol., 33, 637 (2015).
  5. Swartjes JJTM, Sharma PK, van Kooten TH, van der Mei HC, Mahmoudi M, Busscher HJ, Rochford ETJ, Curr. Med. Chem., 22, 2116 (2015)
  6. Neoh KG, Li M, Kang ET, Chiong E, Tambyah PA, J. Mater. Chem. B, 5, 2045 (2017)
  7. Banerjee I, Pangule RC, Kane RS, Adv. Mater., 23(6), 690 (2011)
  8. Wang B, Ren K, Chang H, Wang J, Ji J, ACS Appl. Mater. Interfaces, 5, 4136 (2013)
  9. Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM, Langmuir, 17(20), 6336 (2001)
  10. Jiang H, Manolache S, Wong AC, Denes FS, J. Appl. Polym. Sci., 102(3), 2324 (2006)
  11. Kane RS, Deschatelets P, Whitesides GM, Langmuir, 19(6), 2388 (2003)
  12. Li L, Chen S, Jiang S, J. Biomater. Sci.-Polym. Ed., 18, 1415 (2007)
  13. Wu J, Zhao C, Hu R, Lin W, Wang Q, Zhao J, Bilinovich SM, Leeper TC, Li L, Cheung HM, Chen S, Zheng J, Acta Biomaterialia, 10, 751 (2014)
  14. Kim S, Moon JM, Choi JS, Cho WK, Kang SM, Adv. Fuct. Mater., 26, 4099 (2016)
  15. Xu L, Pranantyo D, Neoh KG, Kang ET, ACS Sustainable Chem. Eng., 5, 3055 (2017)
  16. Kim DW, Moon JM, Park SY, Choi JS, Cho WK, J. Ind. Eng. Chem., 68, 42 (2018)
  17. Kingshott P, Wei J, Bagge-Ravn D, Gadegaard N, Gram L, Langmuir, 19(17), 6912 (2003)
  18. Cheng G, Zhang Z, Chen S, Bryers JD, Jiang S, Biomaterials, 28, 4192 (2007)
  19. Liu QS, Singh A, Lalani R, Liu LY, Biomacromolecules, 13(4), 1086 (2012)
  20. Fujimoto K, Tadokoro H, Ueda Y, Ikada Y, Biomaterials, 14, 442 (1993)
  21. Cringus-Fundeanu I, Luijten J, van der Mei HC, Busscher HJ, Schouten AJ, Langmuir, 23(9), 5120 (2007)
  22. Zhao C, Li LY, Wang QM, Yu QM, Zheng J, Langmuir, 27(8), 4906 (2011)
  23. Yang WJ, Cai T, Neoh KG, Kang ET, Dickinson GH, Teo SLM, Rittschof D, Langmuir, 27(11), 7065 (2011)
  24. Cheng G, Li G, Xue H, Chen S, Bryers JD, Jiang S, Biomaterials, 30, 5234 (2009)
  25. Ki SH, Lee S, Kim D, Song SJ, Hong SP, Cho S, Kang SM, Choi JS, Cho WK, Langmuir, 35(45), 14465 (2019)
  26. Garcia-Fernandez L, Cui JX, Serrano C, Shafiq Z, Gropeanu RA, San Miguel V, Ramos JI, Wang M, Auernhammer GK, Ritz S, Golriz AA, Berger R, Wagner M, del Campo A, Adv. Mater., 25(4), 529 (2013)
  27. Hirota K, Murakami K, Nemoto K, Miyake Y, FEMS Microbiol. Lett., 248, 37 (2005)
  28. Lewis AL, Cumming ZL, Goreish HH, Kirkwood LC, Tolhurst LA, Stratford PW, Biomaterials, 22, 99 (2001)
  29. Yoshioka T, Tsuru K, Hayakawa S, Osaka A, Biomaterials, 24, 2889 (2003)
  30. Jeong Y, Thuy LT, Kim SH, Ko S, Kim S, Cho WK, Choi JS, Kang SM, Macromol. Biosci., 1800137 (2018).
  31. Kaczmarek B, Materials, 13, 3224 (2020)
  32. Park JH, Choi S, Moon HC, Seo H, Kim JY, Hong SP, Lee BS, Kang E, Lee J, Ryu DH, Choi IS, Sci. Rep., 7, 6980 (2017)
  33. Jung BO, Lee YM, Kim JJ, Choi YJ, Jung KJ, Kim JJ, Chung SJ, J. Ind. Eng. Chem., 10, 660 (1999)
  34. Kim CH, Choi YS, Choi KS, J. Ind. Eng. Chem., 7, 1020 (1996)
  35. Tan HL, Ma R, Lin CC, Liu ZW, Tang TT, Int. J. Mol. Sci., 14(1), 1854 (2013)
  36. Kumorek M, Minisy IM, Krunclova T, Vorsilakova M, Venclikova K, Chanova EM, Janouskova O, Kubies D, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 109, 110493 (2020)
  37. Cheng YF, Mei YH, Sathishkumar G, Lu ZS, Li CM, Wang F, Xia QY, Xu LQ, Colloid Interface Sci. Commun., 35, 100241 (2020)
  38. Kim JY, Park HJ, Yoon J, Appl. Chem. Eng., 21(4), 366 (2010)
  39. Choi K, Kim T, Yun S, Yoon J, Lee JC, Appl. Chem. Eng., 22(1), 45 (2011)