화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.96, 109-120, April, 2021
Insights into the major phenolic acids in Perilla frutescens obtained by a sustainable procedure
E-mail:
This research was performed to evaluate the efficiency of ultrasound in obtaining the total extract, caffeic acid and rosmarinic acid from Perilla frutescens using supercritical CO2 (USCCO2) extraction. Compared with traditional heat-reflux, ultrasonic-assisted and SCCO2 extractions, the USCCO2 technique decreased the extraction duration (1.12-1.92 times) and the consumption of solvent (1.90-285.71 times) at lower extraction temperatures and obtained a higher yield from the plant matrix. Furthermore, a second-order kinetic model and Fick’s second diffusion model were implemented to ascertain the extraction rate constant, equilibrium concentration, initial extraction rate, effective diffusion coefficient, mass transfer coefficient, Biot number, equilibrium constant and thermodynamic parameters of the USCCO2 and SCCO2 dynamic extractions of rosmarinic acid from P. frutescens. These results provide valuable insights into the kinetic and mass transfer behaviors that occur during the USCCO2 and SCCO2 procedures and explain the reasons for the better extraction efficiency of the former procedure.
  1. Jun HI, Kim BT, Song GS, Kim YS, Food Chem., 148, 367 (2014)
  2. Zhang J, Li N, Li HZ, Li XJ, Cao JM, Zhang GP, He DL, Ind. Crop. Prod., 112, 660 (2018)
  3. Park DD, Yum HW, Zhong X, Kim SH, Kim DH, Kim SJ, Na HK, Sato A, Miura T, Surh YJ, Front. Pharmacol., 8, 482 (2017)
  4. Igarashi M, Miyazaki Y, Evid.-Based Compl. Alt. Med., 925342 (2013).
  5. Yu ZJ, Liu S, Zhou S, Li H, Yang F, Yang LL, Wu Y, Guo L, Li GB, Bioorg. Med. Chem. Lett., 28, 1037 (2018)
  6. Peng Y, Ye J, KongJ, J. Agric. Food Chem., 53, 8141 (2005)
  7. Zhu F, Asada T, Sato A, Koi Y, Nishiwak H, Tamura H, J. Agri. Food Chem., 62, 885 (2014)
  8. Jeong GH, Cho JH, Jo C, Lee S, Lee SS, Bai HW, Chung BY, Kim TH, Food Chem., 258, 181 (2018)
  9. Sueishi Y, Sue M, Masamoto H, Food Chem., 245, 270 (2018)
  10. Yu H, Qiu JF, Ma LJ, Hu YJ, Li P, Wan JB, Food Chem. Toxicol., 108, 375 (2017)
  11. Xu J, Ge J, He X, Sheng Y, Zheng S, Zhang C, Xu W, Huang K, J. Funct. Foods, 74, 104061 (2020)
  12. Caleja C, Barros L, Barreir JCM, Ciric A, Sokovic M, Calhelha RC, Beatriz M, Oliveira PP, Ferreira ICFR, Food Chem., 250, 67 (2018)
  13. Sarikurkcu C, Andrade JC, Ozer MS, de Lima Silva JMF, Ceylan O, de Sousa E, Coutinho, HDM, Food Chem., 328, 126930 (2020)
  14. Yang YC, Wang CS, Wei MC, Food Bioprod. Process., 118, 77 (2019)
  15. Maskovic P, Velickovic V, Mitic M, Durovic S, Zekovic Z, et al., Ind. Crop. Prod., 109, 875 (2017)
  16. Bakota EL, Winkler-Moser JK, Berhow MA, Elle FJ, Vaughn SF, J. Food Sci., 80, C711 (2015)
  17. Kueh BWB, Yusup S, Osman N, J. CO₂ Util., 24, 220 (2018)
  18. Yang YC, Wang CS, Wei MC, J. CO2 Util., 32, 219 (2019)
  19. Domingues RMA, de Melo MMR, Oliveira ELG, Neto CP, Silvestre AJD, Silva CM, J. Supercrit. Fluids, 74, 105 (2013)
  20. Yang YC, Wei MC, Hong SJ, Huang TC, Lee SZ, Ind. Crop. Prod., 49, 542 (2013)
  21. Wei MC, Hong SJ, Yang YC, J. Ind. Eng. Chem., 48, 202 (2017)
  22. Dassoff ES, Li YO, Trends Food Sci. Technol., 86, 492 (2019)
  23. Liu XY, Ou H, Gregersen H, Ind. Crop. Prod., 145, 112093 (2020)
  24. Santos-Zea L, Gutierrez-Uribe JA, Benedito J, J. Supercrit. Fluids, 144, 98 (2019)
  25. de Melo MMR, Silvestre AJD, Silva CM, J. Supercrit. Fluids, 92, 115 (2014)
  26. Ho YS, Harouna-Oumarou HA, Fauduet H, Porte C, Sep. Purif. Technol., 45(3), 169 (2005)
  27. Schwartzberg HG, J. Food Sci., 40, 211 (1975)
  28. Wei MC, Lin PH, Hong SJ, Chen JM, Yang YC, ACS Sustain. Chem. Eng., 4, 6491 (2016)
  29. Yang YC, Wang CS, Wei MC, Food Chem., 319, 126582 (2020)
  30. Yang YC, Wei MC, Food Chem., 252, 381 (2018)
  31. Yang YC, Wei MC, Lian FY, Huang TC, Chem. Eng. Commun., 201(4), 482 (2014)
  32. Yang YC, Wei MC, Chiu HF, Huang TC, Nat. Prod. Commun, 8, 1683 (2013)
  33. Baranauskaite J, Kopustinskiene DM, Masteikova R, Gajdziok J, Baranauskas A, Bernatoniene J, Colloids Surf. A: Physicochem. Eng. Asp., 539, 280 (2018)
  34. de Melo MMR, Vieira PC, Sen A, Pereira H, Portugal I, Silva CM, Sep. Purif. Technol., 238, 116395 (2020)
  35. Casas L, Mantell C, Rodriguez M, de la Ossa EJM, Roldan A, De Ory I, Caro I, Blandino A, J. Food Eng., 96(2), 304 (2010)
  36. Santos P, Aguiar AC, Barbero GF, Rezende CA, Martinez J, Ultrason. Sonochem., 22, 78 (2015)
  37. Klejdus B, Lojkova C, Plaza M, Snoblova M, Sterbova D, J. Chromatogr. A, 1217, 7956 (2010)
  38. Wei MC, Yang YC, Hong SJ, Evid.-Based Compl. Alt. Med., 450547 (2015).
  39. Yang YC, Lin PH, Wei MC, J. Sci. Food Agric., 97, 3323 (2017)
  40. Dias ALB, Sergio CSA, Santos P, Barbero GF, Rezende CA, Martinez J, Ultrason. Sonochem., 31, 284 (2016)
  41. Dzah CS, Duan Y, Zhang H, Wen C, Zhang J, Chen G, Ma H, Food Biosci., 35, 100547 (2020)
  42. Mouahid A, Bouanga H, Crampon C, Badens E, J. Supercrit. Fluids, 141, 2 (2018)
  43. Yang YC, Wang CS, Wei MC, LWT - Food Sci. Technol., 128, 109503 (2020)
  44. Duarte SH, dos Santos P, Michelon M, Oliveira SMD, Martinez J, Maugeri F, Biochem. Eng. J., 125, 230 (2017)
  45. Da Porto C, Lino AN, Decorti D, LWT-Food Sci. Technol., 61, 98 (2015)
  46. Reategui JLP, Machado APDF, Barbero GF, Rezende CA, Martinez J, J. Supercrit. Fluids, 94, 223 (2014)
  47. Tang WQ, Li DC, Lv YX, Jiang JG, J. Food Sci., 75, C363 (2010)
  48. dos Santos P, de Aguiar AC, Vigano J, Boeing JS, Visentainer JV, Martinez J, J. Supercrit. Fluids, 107, 75 (2016)
  49. Dagostin JLA, Carpine D, Corazza ML, Ind. Crop. Prod., 74, 69 (2015)
  50. Vetal MD, Lade VG, Rathod VK, Chem. Eng. Process., 69, 24 (2013)