화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.2, 246-252, March, 2021
전자선 조사에 의한 전도성 PEDOT:PSS 에어로젤의 전기적 및 기계적 물성 변화 연구
Effects of Electron-beam Irradiation on Electrical and Mechanical Properties of Conductive PEDOT:PSS/Silane Aerogels
E-mail:
초록
전도성 고분자 복합체 PEDOT:PSS에 실란 전구체인 TEOS 또는 GOPS를 혼합하여 고분자 에어로젤을 제작하고, 전자선 조사 공정에 따른 비저항과 스트레스-스트레인 특성을 연구하였다. PEDOT:PSS/실란 에어로젤은 혼합수분산액의 균질화와 동결 건조를 통해 제작하였으며, 복합체 에어로젤에 대한 전자선 조사선량은 1에서 50 kGy까지 달리하였다. 용매 증기 처리를 통해 전도도를 향상시킨 에어로젤의 저항은 전자선 조사에 따라 증가하였다. PEDOT:PSS/TEOS 에어로젤은 전자선 조사에 따라 경직성이 증가하는 경향을 보였으나, PEDOT:PSS/GOPS 샘플은 경직도가 1~5 kGy에서 최대를 보였다. 이러한 경향 차이는 전자선 조사에 의한 공유결합 절단과 가교 기작의 경쟁에 따른 것으로 보인다.
We prepared polymer aerogels based on a conducting polymer, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), and silane precursors, such as tetraethylorthosilicate (TEOS) and (3-glycidyloxypropyl)trimethoxysilane (GOPS), and investigated their specific resistance and stress.strain behaviors as a function of electronbeam dose. PEDOT:PSS/silane aerogels were easily made by homogenizing and freeze-drying from the aqueous mixtures. The composite aerogels were irradiated by the high-energy electron beams with a dose ranging from 1 to 50 kGy. Solvent vapor treatment was also used to see the effects of irradiation on the properties of the resulting aerogels. The resistance of high-conductivity aerogels increased when irradiated. PEDOT:PSS/TEOS aerogels became stiffer when irradiated, whereas PEDOT:PSS/GOPS samples peaked the stiffness at 1~5 kGy. Different behaviors were likely from two competitive mechanisms of chemical scission and cross-linking caused by electron beams.
  1. Shi H, Liu CC, Jiang QL, Xu JK, Adv. Electron. Mater, 1, 150001 (2015)
  2. Jang H, Kim MS, Jang WS, Son HB, Wang DH, Kim FSJ, J. Ind. Eng. Chem., 86, 205 (2020)
  3. Lee YY, Kang HY, Gwon SH, Choi GM, Lim SM, Sun JY, Joo YC, Adv. Mater., 28(8), 1636 (2016)
  4. Feig VR, Tran H, Lee M, Bao ZA, Nat. Commun., 9, 2740 (2018)
  5. Sun K, Zhang SP, Li PC, Xia YJ, Zhang X, Du DH, J. Mater. Sci. Mater. Electron., 26, 4438 (2015)
  6. Yu CB, Youn JR, Song YS, Macromol. Res., 27(6), 606 (2019)
  7. Zhou J, Hsieh YL, ACS Appl. Mater. Inter., 10, 27902 (2018)
  8. Wang XD, Liu PP, Jiang QL, Zhou WQ, Xu JK, et al., ACS Appl. Mater. Inter, 11, 2408 (2019)
  9. Zhao X, Wang WL, Wang Z, Wang JN, Huang T, Dong J, Zhang QH, Chem. Eng. J., 395, 125115 (2020)
  10. Teng C, Lu XY, Zhu Y, Wan MX, Jiang L, RSC Adv., 3, 7219 (2013)
  11. Ismail MR, Yassene AAM, Abd El Bary HMH, Appl. Compos. Mater., 19, 409 (2012)
  12. Chen G, Rastak R, Wnag Y, Yan HP, Feig V, et al., Matter, 1, 205 (2019)
  13. Maleki H, Duraes L, Portugal A, Microporous Mesoporous Mater., 197, 116 (2014)
  14. Khan ZU, Edberg J, Hamedi MM, Gabrielsson R, Granberg H, Wagberg L, Engquist I, Berggren M, Crispin X, Adv. Mater., 28(22), 4556 (2016)
  15. Lee YB, Park CH, Jang SK, Kim FS, J. Korean Phys. Soc., 75, 248 (2019)
  16. Hakansson A, Han SB, Wang SH, Lu J, Braun S, Fahlman M, Berggren M, Crispin X, Fabiano S, J. Polym. Sci. B: Polym. Phys., 55(10), 814 (2017)
  17. Halake K, Bae SM, Lee JY, Cho YH, Jo HI, Heo JW, Park KT, Kim HJ, Ju H, Kim YK, Hasani A, Pahm TD, Choi JH, Hong SH, Choi SC, Lee JH, Macromol. Res., 27(2), 109 (2019)
  18. Parale VG, Lee KY, Park HH, J. Korean Cer. Soc., 54, 184 (2017)
  19. Park CH, Park J, Kim FS, Mol. Cryst. Liq. Cryst., 687(1), 1 (2019)
  20. Acquaroli LN, Newby P, Santato C, Peter YA, AIP Adv., 6, 105007 (2016)
  21. Ghanbari F, Ghoorchi T, Shawrang P, Mansouri H, Torbati-Nejad NM, Rad. Phys. Chem., 81, 672 (2012)
  22. Jang H, Park J, Kim FS, Phys. Stat. Sol. A, 216, 180098 (2019)
  23. Jonas F, Krafft W, Muys B, Macromol. Symp., 100, 169 (1995)
  24. Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR, Adv. Mater., 12(7), 481 (2000)
  25. Jang SK, Choi J, Kim FS, J. Nanosci. Nanotechnol., 17, 7793 (2017)
  26. Kim JY, Jung JH, Lee DE, Joo J, Synth. Met., 126, 311 (2002)
  27. Ouyang J, Xu QF, Chu CW, Yang Y, Li G, Shinar J, Polymer, 45(25), 8443 (2004)
  28. Yeo JS, Yun JM, Kim DY, Park S, Kim SS, Yoon MH, Kim TW, Na SI, ACS Appl. Mater. Inter., 4, 2551 (2012)
  29. Lee JJ, Lee SH, Kim FS, Choi HH, Kim JH, Org. Electron., 26, 191 (2015)
  30. Bhadra S, Khastgir D, Polym. Degrad. Stabil., 92, 1824 (2007)
  31. Vesely D, Finch DS, Cooley GE, Polymer, 29, 1402 (1988)
  32. Choi JI, Kim JH, Lee KW, Song BS, Yoon Y, Byun MW, Lee JW, Korean J. Chem. Eng., 26(6), 1825 (2009)
  33. Longieras N, Sebban M, Palmas P, Rivaton A, Gardette JL, Polym. Degrad. Stabil., 92, 2190 (2007)
  34. Visakh PM, Nazarenko OB, Sarathchandran C, Melnikova TV, Nazarenko SY, Kim JC, Radiat. Phys. Chem., 136, 17 (2017)