화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.2, 92-96, February, 2021
MoS2 나노시트의 TiO2 나노선에 수직 성장을 통한 광전기화학반응 향상
Enhanced Photoelectrochemical Reaction of MoS2 Nanosheets Vertically Grown on TiO2 Nanowires
E-mail:
We report the growth and enhanced photoelectrochemcial (PEC) water-splitting reactivity of few-layer MoS2 nanosheets on TiO2 nanowires. TiO2 nanowires with lengths of ~1.5 ~ 2.0 μm and widths of ~50~300 nm are synthesized on fluorine-doped tin oxide substrates at 180 °C using hydrothermal methods with Ti(C4H9O)4. Few-layer MoS2 nanosheets with heights of ~250 ~ 300 nm are vertically grown on TiO2 nanowires at a moderate growth temperature of 300 °C using metalorganic chemical vapor deposition. The MoS2 nanosheets on TiO2 nanowires exhibit typical Raman and ultraviolet-visible light absorption spectra corresponding to few-layer thick MoS2. The PEC performance of the MoS2 nanosheet/TiO2 nanowire heterostructure is superior to that of bare TiO2 nanowires. MoS2/TiO2 heterostructure shows three times higher photocurrent than that of bare TiO2 nanowires at 0.6 V. The enhanced PEC photocurrent is attributed to improved light absorption of MoS2 nanosheets and efficient charge separation through the heterojunction. The photoelectrode of the MoS2/TiO2 heterostructure is stably sustained during on-off switching PEC cycle.
  1. Fountaine KT, Lewerenz HJ, Atwater HA, Nat. Commun., 7, 13706 (2016)
  2. Kim S, Kim H, Hong SK, Kim D, Korean J. Mater. Res., 26(11), 604 (2016)
  3. Joy J, Mathew J, George SC, Int. J. Hydrog. Energy, 43(10), 4804 (2018)
  4. Park JW, Quang ND, Yang HN, Hong SH, Hien TT, Kim CJ, Kim DJ, Korean J. Mater. Res., 28(5), 261 (2018)
  5. Wang Y, Tian W, Chen C, Xu W, Li L, Adv. Funct. Mater., 29, 180903 (2019)
  6. Yun HK, Hong SH, Kim DJ, Kim CJ, Korean J. Mater. Res., 29(1), 1 (2019)
  7. Park JH, Kim HJ, Korean J. Mater. Res., 30(5), 239 (2020)
  8. Nguyen TD, Man MT, Nguyen MH, Seo DB, Kim ET, Mater. Res. Express, 6, 085070 (2019)
  9. Zheng L, Teng F, Ye X, Zheng H, Fang X, Adv. Eng. Mater., 10, 190235 (2020)
  10. Seo DB, Kim MS, Trung TN, Kim ET, Electrochim. Acta, 364, 137164 (2020)
  11. Dang TC, Dang VT, Nguyen TD, Truong TH. et al., Mater. Sci. Semicond. Process, 121, 105308 (2021)
  12. He H, Lin J, Fu W, Wang X, Wang H, Zeng Q, et al., Adv. Eng. Mater., 6, 160046 (2016)
  13. Laursen AB, Kegnæs S, Dahla S, Chorkendorff I, Energy Environ. Sci., 5, 5577 (2012)
  14. Seo DB, Kim S, Trung TN, Kim D, Kim ET, J. Alloy. Compd., 770, 686 (2019)
  15. Trung TN, Seo DB, Quang ND, Kim D, Kim ET, Electrochim. Acta, 260, 150 (2018)
  16. Yan J, Wu G, Guan N, Li L, Lib Z, Cao X, Phys. Chem. Chem. Phys., 15, 10978 (2013)
  17. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M, Nano Lett., 11, 5111 (2011)
  18. Seo DB, Trung TN, Kim DO, Duc DV, Hong S, Sohn Y, Jeong JR, Kim ET, Nano-Micro Lett., 12, 172 (2020)
  19. Zhang X, Shao C, Li X, Miao F, Wang K, Lu N, Liu Y, J. Alloy. Compd., 686, 137 (2016)
  20. Nan F, Li P, Li J, Cai T, Ju S, Fang L, J. Phys. Chem. C, 122, 15055 (2018)