화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.30, No.5, 239-245, May, 2020
광전기화학적 물 산화용 산화아연 나노막대 광양극의 합성 및 특성평가
ZnO Nanorod Array as an Efficient Photoanode for Photoelectrochemical Water Oxidation
E-mail:
Synthesizing one-dimensional nanostructures of oxide semiconductors is a promising approach to fabricate highefficiency photoelectrodes for hydrogen production from photoelectrochemical (PEC) water splitting. In this work, vertically aligned zinc oxide (ZnO) nanorod arrays are successfully synthesized on fluorine-doped-tin-oxide (FTO) coated glass substrate via seed-mediated hydrothermal synthesis method with the use of a ZnO nanoparticle seed layer, which is formed by thermally oxidizing a sputtered Zn metal thin film. The structural, optical and PEC properties of the ZnO nanorod arrays synthesized at varying levels of Zn sputtering power are examined to reveal that the optimum ZnO nanorod array can be obtained at a sputtering power of 20W. The photocurrent density and the optimal photocurrent conversion efficiency obtained for the optimum ZnO nanorod array photoanode are 0.13 mA/cm2 and 0.49 %, respectively, at a potential of 0.85 V vs. RHE. These results provide a promising avenue to fabricating earth-abundant ZnO-based photoanodes for PEC water oxidation using facile hydrothermal synthesis.
  1. Lewis NS, Nocera DG, Proc. Natl. Acad. Sci. U. S. A., 103, 15729 (2006)
  2. Kamat PV, J. Phys. Chem. C, 111, 2834 (2007)
  3. Winter CJ, Int. J. Hydrog. Energy, 34(14), S1 (2009)
  4. Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009)
  5. Chen XB, Shen SH, Guo LJ, Mao SS, Chem. Rev., 110(11), 6503 (2010)
  6. Osterloch FE, Chem. Soc. Rev., 42, 2294 (2013)
  7. Yang Y, Xu D, Wu Q, Diao P, Sci. Rep., 6, 30158 (2016)
  8. Liu Y, Gu Y, Yan X, Kang Z, Lu S, Sun Y, Zhang Y, Nano. Res., 8, 2891 (2015)
  9. Wang MY, Sun L, Lin ZQ, Cai JH, Xie KP, Lin CJ, Energy Environ. Sci., 6, 1211 (2013)
  10. Wheeler DA, Wang GM, Ling YC, Li Y, Zhang JZ, Energy Environ. Sci., 5, 6682 (2013)
  11. Kang Z, Gu YS, Yan XQ, Bai ZM, Liu YC, Liu S, Zhang XH, Zhang Z, Zhang XJ, Zhang Y, Biosens. Bioelectron., 64, 499 (2015)
  12. Kang Z, Yan XQ, Wang YF, Bai ZM, Liu YC, Zhang Z, LinP, Zhang XH, Yuan HG, Zhang XJ, Sci. Rep., 5, 7882 (2015)
  13. Fujishima A, Honda K, Nature, 238, 37 (1972)
  14. Min BG, Kim HJ, Korean J. Mater. Res., 29(3), 196 (2019)
  15. Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
  16. Hu J, Odom TW, Lieber CM, Accounts Chem. Res., 32, 435 (1999)
  17. Beermann N, Vayssieres L, Lindquist SE, Hagfeldt A, J. Electrochem. Soc., 147(7), 2456 (2000)
  18. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P, Science, 292, 1897 (2001)
  19. Wu JJ, Liu SC, Adv. Mater., 14(3), 215 (2002)
  20. Liu L, Hong K, Hu T, Xu M, J. Alloy. Compd., 511, 195 (2012)
  21. Fudzi LM, Zainai Z, Lim HN, Chang SK, Holi AM, Ali MS, Materials, 11, 704 (2018)
  22. Zhang R, Yin PG, Wang N, Guo L, Solid State Sci., 11, 865 (2009)
  23. Sinsermsuksakul P, Heo J, Noh W, Hock AS, Gordon RG, Adv. Eng. Mater., 1, 1116 (2011)
  24. Taug J, Grigorovici R, Vancu A, Phys. Stat. Sol., 15, 627 (1966)
  25. Srikant V, Clarke DR, J. Appl. Phys., 83, 5447 (1998)
  26. Hisatomi T, Kubota J, Domen K, Chem. Soc. Rev., 43, 7520 (2014)
  27. Sawyer DT, Sobkowiak AJ, Roberts J, Electrochemistry for Chemists, 2nd ed., p. 196, John Wiley & Sons, New York (1995).