화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.93, 436-447, January, 2021
Tailoring poly(ether-imide) films features towards high performance flexible substrates
E-mail:
A series of films prepared from poly(ether-imide)s (PEI) containing a hydroxyl group and various flexible bridges has been investigated to survey the applicative potential. The structure-property correlations were studied to explore the influence of the structural design on the overall physico-chemical properties. FTIR spectra confirmed the complete imidization of polyamidic acid precursors used for films preparation. These films exhibited high glass transition temperatures, and two stages of decomposition, being thermally stable up to 400 °C, with a char residue up to 68.97 %. A systematic non-isothermal kinetic study was accomplished to evaluate the kinetic parameters of the thermogravimetric curves. The dielectric behaviour of the PEI films was assessed on the bases of dielectric constant, dielectric loss, secondary relaxations, dielectric loss processing by Havriliak-Negami model and conductivity studies. Beside the mechanical behaviour evaluation, these polymer films were subjected to chemical resistance tests in the presence of methyl ethyl ketone and an alkaline solution. To prove their suitability for use as flexible electrodes, e.g. electrochemical storage devices, the films were coated with a graphite-containing paint and analysed in comparison with indium tin oxide-coated glass with respect to the electrical response in a standard electrochemical cell.
  1. Siffert P, Krimmel E, Silicon: Evolution and future of a technology, Springer-Verlag, Berlin, Heidelberg, 2004.
  2. Huang S, Liu Y, Zhao Y, Ren Z, Guo CF, Adv. Funct. Mater., 29, 180592 (2019)
  3. Chu B, Burnett W, Chung JW, Bao ZN, Nature, 549(7672), 328 (2017)
  4. Song Z, Zhan H, Zhou Y, Angew. Chem.-Int. Edit., 49, 8444 (2010)
  5. Ji D, Li T, Hu W, Fuchs H, Adv. Mater., 31, 180607 (2019)
  6. Constantin CP, Bejan AE, Damaceanu MD, Macromolecules, 52(21), 8040 (2019)
  7. Ni HJ, Liu JG, Wang ZH, Yang SY, J. Ind. Eng. Chem., 28, 16 (2015)
  8. Tapaswi PK, Ha CS, Macromol. Chem. Phys., 220, 180031 (2019)
  9. Zhang Y, Fan W, Huang Y, Zhang C, Liu T, RSC Adv, 5, 1301 (2015)
  10. Wang ZZ, Li J, Xu JJ, Huang JH, YAng Y, Tna RQ, Chne GF, Fang XZ, Zhao Y, Song WJ, J. Mater. Sci. Technol., 48, 156 (2020)
  11. Wang C, Yu C, Chu R, Guan Z, Ullah Z, Song H, Zhang Y, Zhao L, Li Q, Liu L, Nanoscale (2020).
  12. Byun SW, Lee SH, Song DN, Ryou MH, Lee YM, Park WH, J. Ind. Eng. Chem., 72, 390 (2019)
  13. Wang YR, Liu ZT, Wang CX, Hu Y, Lin HN, Kong WH, Ma J, Jin Z, Energy Storage Mater., 26, 494 (2020)
  14. Damaceanu MD, Sava I, Constantin CP, Sens. Actuators B-Chem., 234, 549 (2016)
  15. Boudaden J, Steinmassi M, Endres HE, Drost A, Eisele I, Kutter C, Muller-Buschbaum P, Sensors, 18, 1516 (2018)
  16. Ji B, Guo Z, Wang M, Yang B, Wang X, Li W, Liu J, Microsyst. Nanoeng., 4, 27 (2018)
  17. Kang SS, Kim BL, Yim SJ, Kim JO, Kim DP, Kim YC, J. Ind. Eng. Chem., 88, 159 (2020)
  18. Zhuang YB, Seong JG, Lee YM, Prog. Polym. Sci, 92, 35 (2019)
  19. Zhang SJ, Li YF, Ma T, Zhao JJ, Xu XY, YAng FC, Xiang XY, Polym. Chem., 1, 485 (2010)
  20. Butnaru I, Bruma M, Gaan S, RSC Adv., 7, 50508 (2017)
  21. Deng GX, Luo JZ, Liu S, Wang Y, Zong XP, Xue S, Sep. Purif. Technol., 235, 116218 (2020)
  22. Bacosca I, Hamciuc E, Cristea M, Lisa G, Bruma M, J. Appl. Polym. Sci., 124(3), 1956 (2012)
  23. Wozniak AI, Yegorov AS, Ivanov VS, Igumnov SM, Tcarkova KV, J. Fluor. Chem., 180, 45 (2015)
  24. Rusu RD, Constantin CP, Drobota M, Gradinariu LM, Butnaru M, Pislaru M, Polym. Degrad. Stabil., 177, 109182 (2020)
  25. Zhao J, Peng L, Zhu YL, Song YJ, Wang LJ, Shen YZ, Polymer, 91, 118 (2016)
  26. Wang Z, Li Y, Zhu T, Xiong L, Liu F, Qi H, Polym. Degrad. Stabil., 167, 67 (2019)
  27. Chen YY, Yang CP, Hsiao SH, Eur. Polym. J., 42, 1705 (2006)
  28. Liu H, Zhai L, Bai L, He MH, Wang CG, Mo S, Fan L, Polymer, 163, 106 (2019)
  29. Damaceanu MD, Rusu RD, Musteata VE, Bruma M, Soft. Mater., 9, 44 (2011)
  30. Min H, Kang B, Shin YS, Kim BS, Lee SW, Cho JH, ACS Appl. Mater. Interfaces, 12, 18739 (2020)
  31. Tan J, Wang Q, Liu Y, Zeng Y, Ding Q, Wu R, Liu Y, Xiang X, J. Macromol. Sci. A, 55, 75 (2018)
  32. Seesukphronrarak S, Kawasaki S, Kuwata S, Takata T, J. Polym. Sci. A: Polym. Chem., 57, 2602 (2019)
  33. Liu C, Wang J, Lin E, Zong L, Jian X, Polym. Degrad. Stabil., 97, 460 (2012)
  34. Damaceanu MD, Bruma M, J. Polym. Res., 22, 639 (2015)
  35. Courvoisier E, Bicaba Y, Colin X, Polym. Degrad. Stabil., 147, 177 (2018)
  36. Hamciuc C, Hamciuc E, Bacosca I, Okrasa L, Rev. Roum. Chim., 55, 971 (2010)
  37. Serbezeanu D, Popa AM, Sava I, Carja ID, Amberg M, Rossi RM, Fortunato G, Eur. Polym. J., 64, 10 (2015)
  38. Cheng SW, Huang TT, Tsai CL, Liou GS, J. Mater. Chem. C, 5, 8444 (2017)
  39. Yang KS, Kang YY, Ahn HJ, Kim DG, Park NK, Choi SQ, Won JC, Kim YH, J. Ind. Eng. Chem., 82, 173 (2020)
  40. Li XT, Liu T, Jiao YZ, Dong J, Gan F, Zhao X, Zhang QH, Chem. Eng. J., 359, 641 (2019)
  41. Nocon-Szmajda K, Wolinska-Grabczyk A, Jankowski A, Szeluga U, Wojtowicz M, Konieczkowska J, Hercog A, Sep. Purif. Technol., 242, 116778 (2020)
  42. Chiriac AP, Butnaru I, Damaceanu MD, Electrochim. Acta, 353, 136602 (2020)
  43. Melcher J, Daben Y, Arlt G, IEEE Trans. Electr. Insul., 24, 31 (1989)
  44. Tian Y, Luo L, Yang Q, Zhang L, Wang M, Wu D, Wang X, Liu X, Polymer, 188, 122100 (2020)
  45. Thermal analysis of polymers: Fundamental and applications, Wiley & Sons, New Jersey, chapter 2, pp. 7 2009
  46. Constantin CP, Damaceanu MD, Bruma M, Begunov RS, Dyes Pigment., 163, 126 (2019)
  47. Damaceanu MD, Constantin CP, Bruma M, Begunov RS, Polymer, 151, 34 (2018)
  48. Thermal analysis of polymers: Fundamentals and Applications, Wiley & Sons, New Jersey, chapter 3, pp. 241 2009.
  49. Butnaru I, Varganici CD, Pinteala M, Lehner S, Bruma M, Gaan S, J. Anal. Appl. Pyrolysis, 134, 254 (2018)
  50. Celia JA, Polym. Degrad. Stabil., 36, 99 (1992)
  51. Li X, Huang M, Polym Int., 48, 387 (1999)
  52. Wang PJ, Lin CH, Chang SL, Shih SJ, Polym. Chem., 3, 2867 (2012)
  53. Guo R, Sanders DF, Smith ZP, Freeman BD, Paul DR, McGrath JE, J. Mater. Chem. A, 1, 262 (2013)
  54. Wang CY, Chen WT, Chen YY, Zhao XY, Li J, Ren Q, Mater. Chem. Phys., 144(3), 553 (2014)
  55. Perng LH, J. Appl. Polym. Sci., 79(7), 1151 (2001)
  56. Xie W, Pan WP, Chuang KC, J. Therm. Anal. Calorim., 64, 477 (2001)
  57. ASTM Test method E1641, ASTM Book of Standards 14.02, American Society for Testing and Materials, pp.1042(1994).
  58. Numata S, Kinjo N, Kobunshi Ronbunshu, 42, 443 (1985)
  59. Pramoda KP, Chung TS, Liu SL, Oikawa H, Yamaguchi A, Polym. Degrad. Stabil., 67, 365 (2000)
  60. Serbezeanu D, Butnaru I, Varganici CD, Bruma M, Fortunato G, Gaan S, RSC Adv, 6, 38371 (2016)
  61. Sava I, Damaceanu MD, Constantin CP, Asandulesa M, Wolinska-Grabczyk A, Jankowski A, Eur. Polym. J., 108, 554 (2018)
  62. Havriliak S, Negami S, Polymer, 8, 161 (1967)
  63. Butnaru I, Sava I, Damaceanu MD, Polymer, 200, 122621 (2020)
  64. Carturan S, Quaranta A, Bonafini M, Vomiero A, Maggioni G, Mattei G, de Julian Fernandez C, Bersani M, Mazzoldi P, Della Mea G, Eur. Phys. J. D, 42, 243 (2007)
  65. Lee S, Shi Q, Lee C, APL Mater., 7, 031302 (2019)
  66. Bond AM, Oldham KB, Snook GA, Anal. Chem., 72, 3492 (2000)
  67. Tsierkezos NG, J Solution Chem, 36, 289 (2007)