화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.2, 400-405, February, 2021
Theoretical investigation on the throttle pressure reducing valve through CFD simulation and validating experiments
E-mail:
The throttle pressure reducing valve has potential for the high pressure heat exchanger with the advantage of simple structure, easy operation and maintenance. We investigated the discharge capacity under different pressure difference between inlet and outlet, the area of inlet and throttle though CFD simulation and validating experiments. A theoretical formula of the discharge capacity was developed through the theoretical analysis and simulated results and was well proved by the experiments. The results revealed that the square of discharge capacity is positively proportional to the pressure difference, and the drag coefficient has a linear relationship with the throttle area and the reciprocal of flange area. This research establishes the theoretical basis for the designing and engineering application of throttle pressure reducing valve.
  1. Alvarez-Fernandez M, Portillo-Valdes LD, Alonso-Tristan C, Appl. Therm. Eng., 68, 45 (2014)
  2. Heo G, Lee SK, Expert Syst. Appl., 39, 5078 (2012)
  3. Xu J, Yang T, Sun Y, Zhou K, Shi Y, Appl. Therm. Eng., 67, 179 (2014)
  4. Godino DM, Corzo SF, Nigro NM, Ramajo DE, Nucl. Eng. Des., 335, 265 (2018)
  5. Kim S, Bae BU, Cho YJ, Park YS, Kang KH, Yun BJ, Nucl. Eng. Des., 260, 54 (2013)
  6. Gong M, Peng M, Zhu H, Appl. Therm. Eng., 140, 190 (2018)
  7. Hossienalipour SM, Karbalaee SM, Fathiannasab H, Appl. Therm. Eng., 110, 590 (2017)
  8. Jin Z, Wei L, Chen L, Qian J, Zhang M, J. Zhejiang Univ-SCI A, 14, 137 (2013)
  9. Luo L, He X, Den B, Huang X, J. Press. Vessel Technol., 136, 021601 (2014)
  10. He X, Deng B, Huang X, Yan X, Adv. Mater. Res., 842, 569 (2014)
  11. Jin ZJ, Chen FQ, Qian JY, Zhang M, Chen LL, Wang F, Fei Y, Int. J. Hydrog. Energy, 41(12), 5559 (2016)
  12. Qian JY, Zhang M, Lei LN, Chen FQ, Chen LL, Wei L, Jin ZJ, Energy Conv. Manag., 119, 81 (2016)
  13. Wei L, Jin Z, J. Acoust. Soc. Am., 134, 4191 (2013)
  14. Jin Z, Wei L, Zhu G, Qian J, Fei Y, Jin Z, PLos One, 10, 01 (2015)
  15. Hou C, Qian J, Chen F, Jiang W, Jin Z, Appl. Therm. Eng., 128, 1238 (2018)
  16. Saha B, Chattopadhyay H, Mandal P, Gangopadhyay T, Comput. Fluids, 101, 233 (2014)
  17. Beune A, Kuerten JGM, Schmidt J, AIChE J., 57(12), 3285 (2011)
  18. Beune A, Kuerten JGM, van Heumen MPC, Comput. Fluids, 64, 108 (2012)
  19. Qian JY, Wei L, Jin ZJ, Wang JK, Zhang H, Lu AL, Energy Conv. Manag., 87, 220 (2014)
  20. Zhang P, Zhou D, Shi W, Li X, Wang B, Appl. Therm. Eng., 65, 384 (2014)
  21. Chalet D, Chesse P, Eng. Appl. Comp. Fluid Mech., 4, 387 (2010)
  22. Feng P, Chen D, Cao Y, Chen Y, Korean J. Chem. Eng., 37(4), 604 (2020)
  23. Zahedi P, Saleh R, Moreno-Atanasio R, Yousefi K, Korean J. Chem. Eng., 31(8), 1349 (2014)
  24. Li L, Xu B, Korean J. Chem. Eng., 33(7), 2007 (2016)
  25. Rafiee SE, Sadeghiazad MM, Aerosp. Sci. Technol., 63, 110 (2017)
  26. Wackers J, Deng G, Guilmineau E, Leroyer A, Queutey P, Visonneau M, Palmieri A, Liverani A, J. Comput. Phys., 344, 364 (2017)
  27. Sun Y, Yu J, Wang W, Yang S, Hu X, Feng J, Korean J. Chem. Eng., 37(5), 743 (2020)
  28. Rafiee SE, Sadeghiazad MM, J. Marine Sci. Appl., 15, 388 (2016)