화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.31, No.8, 1349-1361, August, 2014
Influence of fluid properties on bubble formation, detachment, rising and collapse; Investigation using volume of fluid method
E-mail:
Numerical simulations have been carried out to investigate the formation and motion of single bubble in liquids using volume-of-fluid (VOF) method using the software platform of FLUENT 6.3. Transient conservation mass and momentum equations with considering the effects of surface tension and gravitational force were solved by the pressure implicit splitting operator (PISO) algorithm to simulate the behavior of gas.liquid interface movements in the VOF method. The simulation results of bubble formation and characteristics were in reasonable agreement with experimental observations and available literature results. Effects of fluid physical properties, operation conditions such as orifice diameter on bubble behavior, detachment time, bubble formation frequency and bubble diameter were numerically studied. The simulations showed that bubble size and bubble detachment times are linear functions of surface tension and decrease exponentially with the increase in liquid density. In contrast, only a small influence of the fluid viscosity on bubble size and detachment time was observed. Bubble collapse at a free surface simulation with VOF method was also investigated.
  1. Kantarci N, Borak F, Ulgen KO, Process Biochem., 40, 2263 (2005)
  2. Li H, Prakash A, Chem. Eng. Sci., 54(21), 5265 (1999)
  3. Li H, Prakash A, Powder Technol., 113(1-2), 158 (2000)
  4. Schafer R, Marten C, Eigenberger G, Exp. Therm. Fluid Sci., 26, 595 (2002)
  5. Buwa VV, Ranade VV, Chem. Eng. Sci., 57(22-23), 4715 (2002)
  6. Michele V, Hempel DC, Chem. Eng. Sci., 57(11), 1899 (2002)
  7. Dhotre MT, Ekambara K, Joshi JB, Exp. Therm. Fluid Sci., 28, 407 (2004)
  8. Thorat BN, Joshi JB, Exp. Therm. Fluid Sci., 28, 423 (2004)
  9. Yang N, Chen JH, Zhao H, Ge W, Li JH, Chem. Eng. Sci., 62(24), 6978 (2007)
  10. Yang N, Chen JH, Ge W, Li JH, Chem. Eng. Sci., 65(1), 517 (2010)
  11. Yang N, Wu ZY, Chen JH, Wang YH, Li JH, Chem. Eng. Sci., 66(14), 3212 (2011)
  12. Ma D, Liu M, Zu Y, Tang C, Chem. Eng. Sci., 72, 61 (2012)
  13. Delnoij E, Kuipers JA, Vanswaaij WP, Chem. Eng. Sci., 52(21-22), 3623 (1997)
  14. Krishna R, Van Baten JM, Chem. Eng. Res. Des., 79(3), 283 (2001)
  15. Yang GQ, Du B, Fan LS, Chem. Eng. Sci., 62(1-2), 2 (2007)
  16. Hirt CW, Nichols BD, J. Comput. Phys., 39, 201 (1981)
  17. Welch SWJ, Wilson J, J. Comput. Phys., 160, 662 (2000)
  18. Wohak MG, Beer H, Numerical Heat Transfer, Part A, 33, 561 (1998)
  19. Davidson MR, Rudman M, Numerical Heat Transfer, Part B, 41, 291 (2002)
  20. Harvie DJE, Fletcher DF, Int. J. Heat Mass Transf., 44(14), 2633 (2001)
  21. Harvie DJE, Fletcher DF, Int. J. Heat Mass Transf., 44(14), 2643 (2001)
  22. Nikolopoulos N, Theodorakakos A, Bergeles G, Int. J. Heat Mass Transf., 50(1-2), 303 (2007)
  23. Strotos G, Gavaises M, Theodorakakos A, Bergeles G, Int. J. Heat Mass Transf., 51(7-8), 1516 (2008)
  24. Yeoh GH, Tu J, Computational Techniques for Multiphase Flows - Basics and Applications, Elsevier Ltd., 462 (2010)
  25. Ashgriz N, Poo JY, J. Comput. Phys., 93, 449 (1991)
  26. Youngs DL, Time-dependent multi-material flow with large fluid distortion, In Morton KW & Baines MJ (Eds.), Numerical methods for fluid dynamics, London: Academic Press, 273 (1982)
  27. Brackbill JU, Kothe DB, Zemach C, J. Comput. Phys., 100, 335 (1992)
  28. Klostermann J, Schaake K, Schwarze R, Int. J. Numerical Methods in Fluids, DOI:10.1002/fld.3692.
  29. Delnoij E, Kuipers JA, Vanswaaij WP, Chem. Eng. Sci., 52(21-22), 3759 (1997)
  30. Yujie Z, Mingyan L, Yonggui X, Can T, Chem. Eng. Sci., 73, 55 (2012)
  31. Bhaga D, Weber ME, J. Fluid Mech., 105, 61 (1981)
  32. Liger-Belair G, Seon T, Antkowiak A, Bubble Science, Engineering and Technology, 4, 21 (2012)