Clean Technology, Vol.26, No.4, 321-328, December, 2020
Vanadium계 촉매의 NH3-SCR 저온 활성 영향 연구
A Study on the Effect of Low-Temperature Activity on Vanadium Catalysts
E-mail:
초록
본 실험은 상용 촉매인 V/W/TiO2와 V/Mo/TiO2 촉매를 비교하여 SCR 반응에서 저온 활성에 미치는 영향 연구를 진행하였다. NH3-SCR 반응에서의 중요한 영향을 미치는 NH3 산점과 산소의 영향을 확인하기 위해 NH3-TPD, DRIFT, H2-TPR 분석과 O2-on/off 실험을 진행하였다. 반응 활성이 높은 온도인 250 ℃와 활성 저하가 크게 나타나는 180 ℃에서 반응 활성에 미치는 영향을 분석하였다. 250 ℃에서는 SCR 반응에 참여하는 NH3 중, B산점과 L산점이 반응에 참여하는 것을 확인할 수 있었으며, 기상의 산소가 반응에 참여하여 재산화 영향에 크게 나타내는 것을 확인할 수 있었다. 하지만 180 ℃에서는 B산점의 영향이 저하되고, 기상의 산소에 의한 재산화의 영향이 적어 활성이 저하되는 것으로 판단된다.
This experiment compared V/W/TiO2 and V/Mo/TiO2 catalysts that were used for commercial catalysts. The effects of SCR reactions on low-temperature activity were studied. NH3-TPD, DRIFT, and H2-TPR analysis, alongside O2-on/off experiments, were conducted to identify the effects of NH3 acid sites and oxygen participating in the SCR reaction, which had a significant impact on the NH3-SCR reaction. The effect on activity was analyzed at 250 ℃, a high temperature of reaction activity, and 180 ℃, which showed significant activity degradation. In NH3 involved in the SCR reaction at 250 ℃, B and L acid sites contributed to the reaction. In particular, the B acid site was found to have significantly participated in the reaction and affected the NH3-SCR activity, which was reduced at 180 ℃ to affect the activity degradation. Also, atmospheric oxygen contributed to the SCR reaction, causing the active property to facilitate reaction activity at 250 ℃. However, oxygen did not comprise the reaction at 180 ℃, indicating a drop inactivity. Therefore, the B acid site was reduced, and the activity was judged to be degraded due to failure to share in the reaction and low effects by atmospheric oxygen.
- Shelef M, Chem. Rev., 95(1), 209 (1995)
- Parvulescu VI, Grange P, Delmon B, Catal. Today, 46(4), 233 (1998)
- Park SU, Lee YH, Atmos. Environ., 36(4), 619 (2002)
- Casagrande L, Lietti L, Nova I, Forzatti P, Baiker A, Appl. Catal. B: Environ., 22(1), 63 (1999)
- Komatsubara Y, Ida S, Fujitsu H, Fuel, 63(12), 1738 (1984)
- Kusakabe K, Kashima M, Morooka S, Kato Y, Fuel, 67(5), 714 (1988)
- Forzatti P, Appl. Catal. A: Gen., 222(1-2), 221 (2001)
- Hong S, Lee Y, Jeong S, J. Energy Eng., 29(2), 10 (2020)
- Rehder D, Detoxidication of Heavy metals, 30, 205-220 (2011).
- Matralis HK, Papadopoulou C, Kordulis C, Elguezabal AA, Corberan VC, Appl. Catal. A: Gen., 126(2), 365 (1995)
- Nova I, Lietti L, Casagrande L, Dall'Acqua L, Giamello E, Forzatti P, Appl. Catal. B: Environ., 17(3), 245 (1998)
- Hu SL, Apple TM, J. Catal., 158(1), 199 (1996)
- Lietti L, Alemany JL, Forzatti P, Busca G, Ramis G, Giamello E, Bregani F, Catal. Today, 29(1-4), 143 (1996)
- Zhu MH, Lai JK, Tumuluri U, Wu ZL, Wachs IE, J. Am. Chem. Soc., 139(44), 15624 (2017)
- Topsoe NY, Anstrom M, Dumesic JA, Catal. Lett., 76(1-2), 11 (2001)
- Vargas MAL, Casanova M, Trovarelli A, Busca G, Appl. Catal. B: Environ., 75(3-4), 303 (2007)
- Lietti L, Ramis G, Berti F, Toledo G, Robba D, Busca G, Forzatti P, Catal. Today, 42(1-2), 101 (1998)
- Bosch H, Janssen F, A Review on the Fundamentals and Technology, Amsterdam, The Netherlands: Elsevier, 7, 369 (1988).