Clean Technology, Vol.26, No.4, 311-320, December, 2020
가시광선하에서 CdS와 CdZnS/ZnO 광촉매를 이용한 로다민 B, 메틸 오렌지 및 메틸렌 블루의 광분해 반응
Photocatalytic Degradation of Rhodamine B, Methyl Orange and Methylene Blue with CdS and CdZnS/ZnO Catalysts under Visible Light Irradiation
E-mail:
초록
본 연구에서는 단순 침전법으로 제조한 CdS 및 CdZnS/ZnO 광촉매를 이용하여 가시광선하에서 로다민 B, 메틸 오렌지 및 메틸렌 블루 등에 대한 광분해 반응 연구를 수행하였다. 특히 염료와 광촉매의 물리화학적 성질이 전체 광촉매 반응의 반응 경로에 미치는 영향에 대해 중점을 두고 검토하였다. X선 회절분석법, UV-vis 확산반사 분광법 그리고 X선 광전자 분광분석법등을 이용하여 제조된 촉매들의 물리화학적 특성을 분석하였다. CdS 및 CdZnS/ZnO 광촉매 모두 자외선뿐만 아니라 가시광선 영역에 있어서도 우수한 광흡수 특성을 나타내었다. 메틸 오렌지의 경우에는 CdS 및 CdZnS/ZnO 각각의 광촉매 상에서 동일한 반응기구를 통해 반응이 진행되는 반면, 로다민 B 및 메틸렌 블루는 각각의 광촉매 상에서 서로 다른 반응 경로를 통해 광분해 반응이 진행되는 것으로 나타났다. 특히 메틸렌 블루의 광분해 반응을 보면, CdZnS/ZnO 광촉매 상에서는 주로 단일 분자 형태로 전체 반응이 진행되지만, CdS 상에서는 반응 초기부터 이량체를 형성하였다. 이와 같은 결과들은 CdS 및 CdZnS/ZnO 각각의 반도체 광촉매들의 전도대의 띠끝 전위 차이와 염료들의 흡착 특성 차이에 기인한 것으로 판단된다.
In this study, the photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) was carried out under visible light irradiation using CdS and CdZnS/ZnO photocatalysts prepared by a simple precipitation method. This study focused on examining the effect of physicochemical properties of dye and photocatalyst on the reaction pathway of photocatalytic degradation. The prepared photocatalysts were characterized by XRD, UV-vis DRS and XPS. Both the CdS and CdZnS/ZnO photocatalysts exhibit an excellent absorption in the visible light and the UV light regions. It was observed that the photocatalytic degradation of MO proceeds via the same reaction mechanism on both the CdS and CdZnS/ZnO photocatalysts. However, the photocatalytic degradation of RhB and MB was found to proceed through a different reaction pathway on the CdS and CdZnS/ZnO catalysts. It is interesting to note that MB dimer was formed on the CdS catalyst at the beginning of the photocatalytic reaction, while the MB monomer was degraded during the overall photocatalytic reaction on CdZnS/ZnO. The above results may be mainly ascribed to the difference of band edge potential of the conduction band in the CdS and CdZnS/ZnO semiconductors and the adsorption property of dye on the catalysts.
- Neelgund GM, Oki A, Mat. Res. Bull., 129, 110911 (2020)
- Nath I, Chakraborty J, Heynderickx PM, Verpoort F, Appl. Catal. B: Environ., 227, 102 (2018)
- He K, Chen GQ, Zeng GM, Chen AW, Huang ZZ, Shi JB, Huang TT, Peng M, Hu L, Appl. Catal. B: Environ., 228, 19 (2018)
- Chan SHS, Wu TY, Juan JC, Teh CY, J. Chem. Technol. Biotechnol., 86(9), 1130 (2011)
- Moussa H, Girot E, Mozet K, Alem H, Medjandi G, Schneider R, Appl. Catal. B: Environ., 185, 11 (2016)
- Li XZ, Li FB, Yang CL, Ge WK, J. Photochem. Photobiol. A-Chem., 141, 209 (2001)
- Lei Z, You W, Liu M, Zhou G, Takata T, Hara M, Li C, Chem. Commun., 2142-2143 (2003).
- Ganesh RS, Sharma SK. Durgadevi E, Navaneethan M, et al., Superlattices Microstruct., 104, 247 (2017)
- Yue X, Yi S, Wang R, Zhang Z, Qiu S, Sci. Rep., 6, 22268 (2016)
- Sehati S, Entezari MH, J. Colloid Interface Sci., 462, 130 (2016)
- Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J, ACS Catal., 3, 882 (2013)
- Zhu HY, Jiang R, Xiao L, Chang YH, Guan YJ, Li XD, Zeng GM, J. Hazard. Mater., 169(1-3), 933 (2009)
- Zhou YN, Wang YG, Wen T, Zhang SY, Chang BB, Guo YZ, Yang BC, J. Colloid Interface Sci., 467, 97 (2016)
- Lee GD, PArk SS, Jin YE, Hong SS, Clean Technol., 23(2), 196 (2017)
- Cui W, Ma S, Liu L, Hu J, Liang Y, McEvoy JG, Appl. Surf. Sci., 217, 171 (2013)
- Lee SH, Jeong YJ, Lee JM, Kim DS, Bae EJ, Hong SS, Lee GD, Clean Technol., 25(1), 46 (2019)
- Xu N, Wang RL, Li DP, Meng X, Mu JL, Zhou ZY, Su ZM, Dalton Trans., 47, 4191 (2018)
- Suresh P, Murthy TN, Rao AP, Int. J. Sci. Res., 4, 2372 (2015)
- Zhang D, Li J, Wang Q, Wu Q, J. Mater. Chem. A, 1, 8622 (2013)
- Lee JH, Jin Y, Park SS, Hong SS, Lee GD, Appl. Chem. Eng., 26(3), 356 (2015)
- Min Y, Fan J, Xu Q, Zhang S, J. Alloy. Compd., 609, 46 (2014)
- McBride RA, Kelly JM, McCormack DE, J. Mater. Chem., 13, 1196 (2003)
- Li Y, Tang L, Peng S, Li Z, Lu G, CrystEngComm., 14, 6974 (2012)
- Zhou J, Guo W, Nanotechnology, 21, 175601 (2010)
- Jing DW, Guo LJ, J. Phys. Chem. B, 110(23), 11139 (2006)
- Wang W, Zhu W, Xu H, J. Phys. Chem. C, 112, 16754 (2008)
- Deshpande A, Shah P, Gholap RS, Gupta NM, J. Colloid Interface Sci., 333(1), 263 (2009)
- Chen F, Jia D, Cao Y, Jin X, Liu A, Ceram. Int., 41, 14604 (2015)
- Xie SL, Lu XH, Zhai T, Gan JY, Li W, Xu M, Yu MH, Zhang YM, Tong YX, Langmuir, 28(28), 10558 (2012)
- Chen J, Chen J, Li Y, J. Mater. Chem. A, 5, 24116 (2017)
- Song LM, Liu D, Zhang SJ, Wei JF, Int. J. Hydrog. Energy, 44(31), 16327 (2019)
- Das D, Mondal P, RSC Adv., 6, 6144 (2016)
- Li Q, Li X, Wageh W, Al-Ghamdi AA, Yu J, Adv. Eng. Mater., 5, 150001 (2015)
- Carey JH, Lawrence J, Tosine HM, Bull. Environ. Contam. Toxicol., 16, 697 (1976)
- Yu K, Yang S, He H, Sun C, Gu C, Ju Y, J. Phys. Chem. A, 113, 10024 (2009)
- Zhuang JD, Dai WX, Tian QF, Li ZH, Xie LY, Wang JX, Liu P, Shi XC, Wang DH, Langmuir, 26(12), 9686 (2010)
- Li X, Zhu J, Li HX, Appl. Catal. B: Environ., 123, 174 (2012)
- Huang F, Chen L, Wang H, Feng T, Yan Z, J. Electrostat., 70, 43 (2012)
- Zhu YF, Dan Y, Sol. Energy Mater. Sol. Cells, 94(10), 1658 (2010)
- Murugan K, Joardar J, Ganghi AS, Murty BS, Borse PH, RSC, Adv., 6, 43563 (2016)
- Voicu G, Oprea O, Vasile BS, Andronescu E, Digest J. Nanomater. Biostruct., 8, 667 (2013)
- Ahmed T, Edvinsson T, J. Phys. Chem. C, 124, 6395 (2020)
- Bujdak J, J. Photochem. Photobiol. C, 35, 108 (2018)
- Ji XH, Kan GQ, Jiang XZ, Sun B, Zhu MF, Sun YS, J. Colloid Interface Sci., 523, 98 (2018)
- Martinez-de La Cruz A, Alfaro SO, Solid State Sci., 11, 829 (2009)
- Zhang TY, Oyama T, Horikoshi S, Hidaka H, Zhao JC, Serpone N, Sol. Energy Mater. Sol. Cells, 73(3), 287 (2002)
- Zhang T, Oyama T, Aoshima A, Hidaka H, Zhao J, Serpone N, J. Photochem. Photobiol. A-Chem., 140, 163 (2001)
- Chauhan R, Kumar A, Chaudhary RP, Appl. Surf. Sci., 270, 655 (2013)