화학공학소재연구정보센터
Clean Technology, Vol.26, No.4, 270-278, December, 2020
염산 침출용액을 이용한 Pd/Al2O3 촉매에서 고순도 팔라듐 회수
Recovery of Metallic Pd with High Purity from Pd/Al2O3 Catalyst by Hydrometallurgy in HCl
E-mail:
초록
팔라듐(Pd)은 희소금속임에도 불구하고 보석, 촉매 및 치과 소재와 같은 다양한 산업 응용 분야에 널리 사용되고 있다. 이러한 가운데 폐자원으로부터 고순도 Pd를 회수하는 기술들이 주목받고 있다. 본 연구에서는 염산 용액에서 팔라듐 침출 및 회수를 위한 최적 조건을 조사하였다. 염산 농도, 침출온도, 침출시간, 산화제 농도 및 광액 농도 등 다양한 실험조건에서 팔라듐 침출실험을 수행하였다. 염산농도 3 M, 산화제 3 vol%, 침출온도 80 ℃, 침출시간 60분에서 약 97.2%의 침출율을 나타내었다. 과산화수소/차아염소산나트륨의 비율은 침출용액 내 염소 이온 농도를 증가시켜 팔라듐 침출을 용이하게 하는 역할을 하는 것으로 확인하였다. 또한 pH 7에서 포름산을 첨가하여 80 ℃에서 30분 간 교반할 시 99.6% 순도를 가지는 팔라듐 분말을 회수할 수 있었다. 이는 포름산이 80 ℃에서 수소 가스와 이산화탄소로 분해되어 환원제 역할을 하였기 때문이라고 사료된다. 따라서 회수되어진 고순도 팔라듐 분말은 회로, 촉매 전구체 및 수술기구에 사용될 것으로 기대되어진다.
Palladium (Pd) has been widely used in various industrial applications such as jewelry, catalyst, and dental materials despite its limited resources. It has been gaining attention to recover Pd with high purity from the spent materials. This study investigated the optimum conditions for the leaching and recovery of metallic Pd. The leaching parameters are HCl concentration, temperature, time, concentration of oxidants, and pulp density. 97.2% of Pd leaching efficiency was obtained in 3 M HCl with 3 vol% oxidants at 80℃ for 60 min. The ratio of hydrogen peroxide to sodium hypochlorite played a critical role in the leaching efficiency due to the supply of Cl- ions in the leachate. Moreover, the complete recovery of Pd in the leachate was achieved at 80℃ with 0.3 formic acid/leachate after adjusting the pH value of 7. This situation was ascribed to the decomposition of formic acid into hydrogen gas and carbon dioxide at 80℃. ICP-AES and XRD characterized the recovered Pd powder, and the purity of the recovered powder was found to be 99.6%. Consequently, the recovered Pd powder with high purity could be used in circuits, catalyst precursors, and surgical instruments.
  1. Dai CY, Li YG, Ning CL, Zhang WX, Wang XG, Zhang CL, Appl. Catal. A: Gen., 545, 97 (2017)
  2. Lott P, Dolcet P, Casapu M, Grunwaldt JD, Deutschmann O, Ind. Eng. Chem. Res., 58(28), 12561 (2019)
  3. Ivanova AS, Slavinskaya EM, Gulyaev RV, Zaikovskii VI, Stonkus OA, Danilova IG, Plyasova LM, Polukhina IA, Boronin AI, Appl. Catal. B: Environ., 97(1-2), 57 (2010)
  4. Kim JG, Resour. Conserv. Recycl., 77, 22 (2013)
  5. Kolliopoulos G, Balomenos E, Giannopoulou I, Yakoumis I, Panias D, OAlib, 1, 1 (2014)
  6. Panda R, Dinkar OS, Jha MK, Pathak DD, Korean J. Chem. Eng., 37(1), 111 (2020)
  7. Nguyen TH, Kumar BN, Lee MS, Korean J. Chem. Eng., 33(9), 2684 (2016)
  8. Kim JS, Kwon JS, Baek JH, Lee MS, Appl. Chem. Eng., 29(4), 376 (2018)
  9. Behnamfard A, Salarirad MM, Veglio F, Waste Manage., 33, 2354 (2013)
  10. Harjanto S, Cao Y, Shibayama A, Naitoh I, Nanami T, Kasahara K, Okumura Y, Liu K, Fujita T, Mater. Trans., 47(1), 129 (2006)
  11. Angelidis TN, Top. Catal., 16(1-4), 419 (2001)
  12. Palliyarayil A, Jayakumar KK, Sil S, Kumar NS, Johnson Matthey Technol. Rev., 62(1), 60-73 (2018).
  13. Lu J, Dreisinger DB, Cooper WC, Hydrometallurgy, 45(3), 305 (1997)
  14. Trinh HB, Lee JC, Srivastava RR, Kim S, Ilyas S, ACS Sustain. Chem. Eng., 5(8), 7302 (2017)
  15. Chen JP, Lim LL, Chemosphere, 49(4), 363 (2002)
  16. Byun MY, Kim JS, Baek JH, Park DW, Lee MS, Energies, 12(2), 284 (2019)
  17. So HI, Lee JE, Cho YC, Ahn JW, Ryu HJ, Korean J. Met. Mater., 56(7), 511 (2018)
  18. Izatt RM, Eatough D, Christensen JJ, J. Chem. Soc. A, 1301-1304 (1967).
  19. Ding Y, Zheng H, Li J, Zhang S, Liu B, Ekberg C, Materials, 12(8), 1205 (2019)
  20. Awadalla FT, Molnar RE, Riteey GM, U.S. Patent No. 5,304,233 (1994).
  21. Salinas-Rodriguez E, Hernandez-Avila J, Rivera-Landero I, et al., Hydrometallurgy, 160, 6 (2016)
  22. Xie H, ZhangL, Li H, Koppala S, Yin S, Li S, Yang K, Zhu F, Mater. Res. Express, 6(7), 075505 (2019)
  23. Paiva AP, Ortet O, Carvalho GI, Nogueira CA, Hydrometallurgy, 171, 394 (2017)
  24. Wu J, Ahn J, Lee J, Korean J. Met. Mater., 57(4), 245 (2019)
  25. Cao Y, Harijanto S, Shibayama A, Naitoh I, Nanami T, et al., Mater. Trans., 47(8), 2015 (2006)
  26. Lefevre G, Duc M, Lepeut P, Caplain R, Fedoroff M, Langmuir, 18(20), 7530 (2002)
  27. Dash B, Das BR, Tripathy BC, Bhattacharya IN, Das SC, Hydrometallurgy, 92(1-2), 48 (2008)
  28. Puigdomenech I, https://www.kth.se/che/medusa/downloads-1.386254 (accessed Nov. 2020).
  29. Ojeda M, Iglesia E, Angew. Chem., 121(26), 4894-4897.
  30. Gopinath R, Babu NS, Kumar JV, Lingaiah N, Prasad PSS, Catal. Lett., 120(3-4), 312 (2008)
  31. Balint I, Miyazaki A, Aika K, Chem. Mater., 13(3), 932 (2001)
  32. Lee WJ, Hwang YJ, Kim J, Jeong H, Yoon CW, ChemphysChem, 20(10), 1382 (2019)
  33. Xu L, Wu XC, Zhu JJ, Nanotechnology, 19, 305603 (2008)
  34. Debye P, Ann. Phys., 351(6), 809 (1915)
  35. Centomo P, Canton P, Burato C, Meneghini C, Zecca M, Appl. Sci., 9(15), 2959 (2019)