화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.90, 399-406, October, 2020
Strain induced structural transformation, mechanical and phonon stability in silicene derived 2D-SiB
E-mail:,
Two-dimensional monolayer SiB is a silicene derivative exhibiting buckling of atoms similar to that seen in silicene. This manuscript presents a systematic study of the strain-dependent variation of the structural, mechanical, and dynamical properties of SiB. Strain was applied in the uniaxial armchair, uniaxial zigzag, and biaxial directions within the range of -0.2 to 0.3. The resultant strain energy plot indicates anisotropic behavior of SiB in these directions. The SiB showed a mechanical strength that was higher than its counterpart, silicene, by an order of 30%. The elastic constant data from the undeformed SiB indicated an anisotropic nature, which was also seen with all the strain directions. Charge density contours, along with Bader charge analysis, confirmed the ionic nature of SiB in its original form. This nature became covalent as the strain varied from the compressive to the tensile regime in the uniaxial zigzag and biaxial directions. The major finding described in this manuscript is a new flat conformation having orthorhombic symmetry in contrast to the buckled structure. In addition, this material was observed to attain stability with the application of uniaxial tensile armchair and zigzag directional strains. Ab-initio molecular dynamics simulation confirmed the thermal stability of SiB in its new conformation.
  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
  2. Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov AA, Nature, 438, 197 (2005)
  3. Gomez-Navarro C, Burghard M, Kern K, Nano Lett., 8, 2045 (2008)
  4. Liu L, Feng Y, Shen Z, Phys. Rev. B, 68, 104102 (2003)
  5. Ajayan PM, Chem. Rev., 99(7), 1787 (1999)
  6. Fagan SB, Baierle R, Mota R, da Silva AJ, Fazzio A, Phys. Rev. B, 61, 9994 (2000)
  7. Nakano H, Mitsuoka T, Harada M, Horibuchi K, Nozaki H, Takahashi N, Nonaka T, Seno Y, Nakamura H, Angew. Chem., 45, 6303 (2006)
  8. Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim CY, Galli G, Wang F, Nano Lett., 10, 1271 (2010)
  9. Acun A, Zhang L, Bampoulis P, Farmanbar M, van Houselt A, Rudenko A, et al., J. Phys. Condens. Matter, 27, 443002 (2015)
  10. Kara A, Enriquez H, Seitsonen AP, Voon LCLY, Vizzini S, Aufray B, Oughaddou H, Surf. Sci. Rep., 67, 1 (2012)
  11. Tritsaris GA, Kaxiras E, Meng S, Wang E, Nano Lett., 13, 2258 (2013)
  12. Li F, Zhang CW, Luan HX, Wang PJ, J. Nanopart. Res., 15, 1972 (2013)
  13. Legrain F, Manzhos S, J. Power Sources, 274, 65 (2015)
  14. Tan X, Cabrera CR, Chen Z, J. Phys. Chem. C, 118, 25836 (2014)
  15. Manju MS, Ajith KM, Valsakumar MC, Mech. Mater., 120, 43 (2018)
  16. Hansson A, de Brito Mota F, Rivelino R, Phys. Rev. B, 86, 195416 (2012)
  17. Ding Y, Wang Y, J. Phys. Chem. C, 117, 18266 (2013)
  18. Hansson A, Mota FDB, Rivelino R, Phys. Chem. Chem. Phys., 16, 14473 (2014)
  19. Chen CC, Aykol M, Chang CC, Levi A, Cronin SB, Nano Lett., 11, 1863 (2011)
  20. Wang HY, Cao J, Huang XY, Huang JM, Condens. Matter Phys., 15(1), 1 (2012)
  21. Peng Q, Liang C, Ji W, De S, Comput. Mater. Sci., 68, 320 (2013)
  22. Wang R, Wang S, Wu X, Liang X, Physica B: Condens., 405, 3501 (2010)
  23. Peng Q, Ji W, De S, Comput. Mater. Sci., 56, 11 (2012)
  24. Peng Q, Han L, Wen X, Liu S, Chen Z, Lian J, De S, Phys. Chem. Chem. Phys., 17, 2160 (2015)
  25. Anees P, Valsakumar M, Panigrahi B, 2D Mater., 2, 035014 (2015)
  26. Kresse G, Hafner J, Phys. Rev. B, 47, 558 (1993)
  27. Kresse G, Hafner J, Phys. Rev. B, 49, 14251 (1994)
  28. Kresse G, Furthmuller J, Phys. Rev. B, 54, 11169 (1996)
  29. Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
  30. Blochl PE, Phys. Rev. B, 50, 17953 (1994)
  31. Jones RO, Gunnarsson O, Rev. Mod. Phys, 61, 689 (1989)
  32. Togo A, Tanaka I, Scripta Materialia, 108, 1 (2015)
  33. Bom M, Huang K, Dynamical theory of crystal lattices, Oxford, Clarendon, 1955.
  34. Akinwande D, Brennan CJ, Bunch JS, Egberts P, Felts JR, Gao H, Huang R, et al., Extreme Mech. Lett., 13, 42 (2017)
  35. Ting T, Chen T, Mech QJ, Appl. Math., 58, 73 (2005)
  36. Mortazavia B, Rahamana O, Makaremib M, Dianatc A, Cunibertic G, Rabczuk T, Physica E, 87, 228 (2017)
  37. Henkelman G, Arnaldsson A, Jonsson H, Comput. Mater. Sci., 36, 354 (2006)
  38. Sa B, Li YL, Qi J, Ahuja R, Sun Z, J. Phys. Chem. C, 118, 26560 (2014)
  39. Wang H, Li Q, Gao Y, Miao F, Zhou XF, Wan X, New J. Phys., 18, 073016 (2016)
  40. Zhang AZ, Liu JT, Guo SD, Li HC, Phys. Chem. Chem. Phys., 19, 14520 (2017)
  41. Ahn GH, Amani M, Rasool H, et al., Nat. Commun., 608 (2017)
  42. Ashcroft N, Mermin N, Solid State Physics, Saunders, Philadelphia, PA, 1976.