Journal of Industrial and Engineering Chemistry, Vol.90, 389-398, October, 2020
Handy Soft Jet Plasma as an Effective Technique for Tailored Preparation of ZnS Nanomaterials and Shape Dependent Antibacterial Performance of ZnS
E-mail:
In this study, zinc sulphide nanomaterial (ZnS NM) powders were prepared with the assistance of an atmospheric pressure soft jet plasma (APPJ) device. Regular approaches to ZnS preparation mainly resulted in aggregated powders, thus plasma methods were investigated to obtain controlled morphological structures. The APPJ plasma-assisted ZnS exhibited unique surface architectures, such as nanorods, layers and spherical aggregates, that were controllably obtained by changing the reactant concentration and type of precursor. The prepared ZnS showed good thermal stability by no changes in its composition up to 400 °C. The APPJ plasma-assisted ZnS showed sphalerite and wurtzite crystal structures and resulted in excellent chemical purity. The simple and handy APPJ plasma method shows good potential for shape-controlled ZnS NMs preparation without addition of surfactant chemicals, mechanical stirring, external heating or any other tedious procedures. This capability showcases the scientific and technological merit of this technique. The prepared ZnS NMs were utilized as antibacterial agents and evaluated the activity using three techniques against the human pathogens of E. coli, S. aureus and K. pneumoniae. The ZnS NMs showed effective concentration and shape-dependent activity when used as an antibacterial material.
- Yang SJ, Oh JH, Kim S, Yang H, Do YR, J. Mater. Chem. C, 3, 3582 (2015)
- Wang X, Xie Z, Huang H, Liu Z, Chen D, Shen G, J. Mater. Chem., 22, 6845 (2012)
- Noda D, Hagiwara K, Yamamoto T, Okamoto S, Jpn. J. Appl. Phys., 44, 4108 (2005)
- Hanifehpour Y, Soltani B, Amani-Ghadim AR, Hedayati B, Khomami B, Joo SW, J. Ind. Eng. Chem., 34, 41 (2016)
- Hanifehpour Y, Soltani B, Amani-Ghadim AR, Hedayati B, Khomami B, Joo SW, Mater. Res. Bull., 76, 411 (2016)
- Mofokeng TP, et al., J. Nanotechnol. (2018).
- Kumar S, Jain A, Panwar S, et al., Int. J. Appl. Ceram. Technol., 16, 531 (2019)
- Hu P, et al., Adv. Mater. Phys. Chem., 3, 10 (2013)
- Feigl CA, Barnard AS, Russo SP, Phys. Chem. Chem. Phys., 14, 9871 (2012)
- Sharma A, Rao VK, Kamboj DV, Gaur R, Upadhyay S, Shaik M, Biotechnol. Rep., 6, 129 (2015)
- Lee GJ, Wu JJ, Powder Technol., 318, 8 (2017)
- Hwang DH, Ahn JH, Hui KN, Hui KS, Son YG, Nanoscale Res. Lett., 7, 26 (2012)
- Vishwakarma R, J. Theor. Appl. Phys., 9, 185 (2015)
- Peng H, Liuyang B, Lingjie Y, Jilin L, Fangli Y, Yunfa C, Nanoscale Res. Lett., 4, 1047 (2009)
- Ananth A, Dharaneedharan S, Seo HJ, Heo MS, Boo JH, Chem. Eng. J., 322, 742 (2017)
- Amiri GR, Fatahian S, Kianpour N, Curr. Nanosci., 10, 796 (2014)
- Pathania D, Kumari M, Gupta VK, Mater. Des., 87, 1056 (2015)
- Ashokkumar M, Boopathyraja A, Superlattices Microstruct., 113, 236 (2018)
- Yang X, et al., J. Inorg. Biochem., 167, 6 (2017)
- Kalpana K, Selvaraj V, RSC Adv., 5, 47766 (2015)
- Suganthi N, Pushpanathan K, Inter. J. Environ. Sci. Technol., 16, 3375 (2019)
- Malarkodi C, Rajeshkumar S, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G, Bioinorg. Chem. Appl. (2014).
- Jacob JM, et al., Ceram. Int., 45, 24193 (2019)
- Panthi G, Ranjit R, Khadka S, Gyawali KR, Kim HY, Park M, Adv. Compos. Hybrid Mater., 3, 8 (2020)
- Kumar GA, Naik HSB, Viswanath R, Gowda IKS, Santhosh KN, Mater. Sci. Semicond. Process., 58, 22 (2017)
- Al-Bayati FA, J. Ethnopharmacol., 116, 403 (2008)
- Saito N, Bratescu MA, Hashimi K, Jpn. J. Appl. Phys., 57, 0102A4 (2018)
- Gerber IC, et al., Appl. Sci., 7, 812 (2017)
- Yang ZX, Zhong W, Deng Y, Au C, Du YW, Nanoscale Res. Lett., 5, 1124 (2010)
- Roychowdhury A, Pati SP, Kumar S, Das D, Powder Technol., 254, 583 (2014)
- Xing R, Liu S, Nanoscale, 4, 3135 (2012)
- Reddy PL, et al., J. Mater. Sci.: Mater. Electron. (2019).
- Ibupoto ZH, Khun K, Liu X, Willander M, Nanomaterial, 3, 564 (2013)
- Macdonald TJ, et al., J. Mater. Chem. A, 3, 13324 (2015)
- Langer DW, Vesely CJ, Phys. Rev. B, 2, 4885 (1970)
- Li X, Li X, Zhu B, Wang J, Lan H, Chen X, RSC Adv., 7, 30956 (2017)
- Strohmeier BR, Hercules DM, J. Catal., 86, 266 (1984)
- Siriwardane RV, Poston JA, Appl. Surf. Sci., 45, 131 (1990)
- Yu XR, Liu F, Wang ZY, Chen Y, J. Electron. Spectrosc. Relat. Phenom., 50, 159 (1990)
- Ananth A, Dharaneedharan S, Heo MS, Mok YS, Chem. Eng. J., 262, 179 (2015)
- Ananth A, Dharaneedharan S, Gandhi MS, Heo MS, Mok YS, Chem. Eng. J., 223, 729 (2013)
- Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS, Environ. Sci. Technol., 41, 8484 (2007)
- Sergi R, Bellucci D, Salvatori R, Maisetta G, Batoni G, Cannillo V, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 104, 109910 (2019)
- Raghupathi KR, Koodali RT, Manna AC, Langmuir, 27(7), 4020 (2011)
- Padmavathy N, Vijayaraghavan R, J. Biomed. Nanotechnol., 7, 813 (2011)
- Kelleher SM, Habimana O, Lawler J, O’ Reilly B, Daniels S, Casey E, Cowley A, ACS Appl. Mater. Interface, 8, 14966 (2016)
- Suito Y, Yokoyama S, Takahashi H, Suto K, Inoue C, Tohji K, Electrochem. Meet. Abs. 21 (2013).
- Zou YH, et al., Acta Biomater., 98, 196 (2019)
- Graham AI, et al., J. Biol. Chem., 284, 18377 (2009)
- Yamamoto O, Sawai J, Ishimura N, Kojima H, Sasamoto T, J. Ceram. Soc. Jpn., 107, 853 (1999)