화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.87, 242-249, July, 2020
Membraneless biofuel cells using new cathodic catalyst including hemin bonded with amine functionalized carbon nanotube and glucose oxidase sandwiched by poly(dimethyl-diallylammonium chloride)
E-mail:
A new cathodic catalyst is developed for improving the performance of membraneless enzymatic biofuel cell (EBC) by enhancing overall oxygen reduction reaction (ORR). In this catalyst, both hemin and glucose oxidase (GOx) are considered as enzymatic catalysts to facilitate H2O2 reduction reaction (HRR) and partial oxygen reduction reaction (PORR), respectively. Hemin is attached to amine group functionalized carbon nanotube (Amine-CNT) to form amide bond, and GOx is conjugated with two poly(dimethyl-diallylammonium chloride) (PDDA) layers to form sandwich-like structure. As a result, [Amine-CNT/ Hemin]/PDDA/GOx/PDDA catalyst is completed. This catalyst plays a role in reducing the amount of GOx leached out and preserving the mass transfer of fuels, and finally, increasing the catalytic activity for cathodic reactions. According to electrochemical estimation, its onset potential reaches 0.4 V vs. Ag/AgCl and current density significantly increases to 323 μA cm-2. When the performance of membraneless EBC adopting this catalyst is measured, maximum power density is 24.1 ± 0.61 mW cm-2 and its activity preserves 82.1% after four weeks. This excellent result is because PORR and HRR are promoted by the rigid connection of GOx and hemin, which is mainly induced by the sandwich effect of GOx by PDDA layers.
  1. Minteer SD, Liaw BY, Cooney MJ, Curr. Opin. Biotechnol., 18(3), 228 (2007)
  2. Moon H, Chang IS, Kim BH, Bioresour. Technol., 97(4), 621 (2006)
  3. Rincon RA, Lau C, Luckarift HR, Garcia KE, Adkins E, Johnson GR, Atanassov P, Biosens. Bioelectron., 27(1), 132 (2011)
  4. Kang S, Hyun K, Chung Y, Kwon Y, Appl. Surf. Sci., 507, 145007 (2020)
  5. Cosnier S, Le Goff A, Holzinger M, Electrochem. Commun., 38, 19 (2014)
  6. Christwardana M, Chung Y, Kwonr M, NPG Asia Mater., e386 (2017).
  7. Hyun KH, Kang SY, Kwon YC, Korean J. Chem. Eng., 36(3), 500 (2019)
  8. Topcagic S, Minteer SD, Electrochim. Acta, 51(11), 2168 (2006)
  9. Chung Y, Ahn Y, Kim DH, Kwon Y, J. Power Sources, 337, 152 (2017)
  10. Ivnitski D, Branch B, Atanassov P, Electrochem. Commun., 8(8), 1204 (2006)
  11. du Toit H, Di Lorenzo M, Electrochim. Acta, 138, 86 (2014)
  12. Chung Y, Hyun KH, Kwon Y, Nanoscale, 8(2), 1161 (2016)
  13. Chung Y, Ahn Y, Christwardana M, Kim H, Kwon Y, Nanoscale, 8(17), 9201 (2016)
  14. Ji J, Woo J, Chung Y, Joo SH, Kwon Y, Chem. Eng. J., 381, 122679 (2020)
  15. Ji J, Joh HI, Chung Y, Kwon Y, Nanoscale, 15998 (2017).
  16. Christwardana M, Ji JY, Chung YJ, Kwon YC, Korean J. Chem. Eng., 34(11), 2916 (2017)
  17. Chung Y, Ji J, Kwon Y, J. Mater. Chem. C, 11597 (2019).
  18. Ji J, Woo J, Chung Y, Joo SH, Kwon Y, Appl. Surf. Sci., 511, 145449 (2020)
  19. Elouarzaki K, Bourourou M, Holzinger M, Le Goff A, MarksRS, Cosnier S, Energy Environ. Sci., 8(7), 2069 (2015)
  20. Wang H, Wan K, Shi X, Adv. Mater., 31(45), 180536 (2019)
  21. Jung S, Kwon I, Sci. Rep., 7(1), 44330 (2017)
  22. Chung Y, Tannia DC, Kwon Y, Chem. Eng. J., 334, 1085 (2018)
  23. Christwardana M, Chung YJ, Kim DH, Kwon YC, J. Ind. Eng. Chem., 71, 435 (2019)
  24. Liang ZX, Song HY, Liao SJ, J. Phys. Chem. C, 115(5), 2604 (2011)
  25. Huang W, Hao Q, Lei W, Wu L, Xia X, Mater. Res. Express, 1(4), 045601 (2014)
  26. Luo F, Lin Y, Zheng L, Lin X, Chi Y, ACS Appl. Mater. Interfaces, 7(21), 11322 (2015)
  27. Amreen K, Kumar AS, Mani V, Huang ST, ACS Omega, 3(5), 5435 (2018)
  28. Koushanpour A, Gamella M, Guz N, Katz E, Electroanalysis, 29(4), 950 (2017)
  29. Kang SH, Yoo KS, Chung YJ, Kwon YC, J. Ind. Eng. Chem., 62, 329 (2018)
  30. Djoko KY, Chong LX, Wedd AG, Xiao Z, Am. Chem. Soc., 132(8), 2005 (2015)
  31. Feifel SC, Kapp A, Lisdat F, Adv. Biochem. Eng. Biotechnol., 140, 253 (2014)
  32. Wang SY, Yu DS, Dai LM, J. Am. Chem. Soc., 133(14), 5182 (2011)
  33. Ahn Yeonjoo, Yoo Kye Sang, Kim Lae-Hyun, Kwon Yongchai, Int. J. Hydrog. Energy, 41(39), 17548 (2016)
  34. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197 (2015)
  35. Iler RK, J. Colloid Interface Sci., 21(6), 569 (1966)
  36. Yao YL, Shiu KK, Electroanalysis, 20(14), 1542 (2008)
  37. Guo Y, Li J, Dong S, Sens. Actuators B-Chem., 160(1), 295 (2011)
  38. Zhang Y, Xu Li B, RSC Adv., 3(17), 6044 (2013)
  39. Ji J, Chung Y, Kwon Y, J. Mater. Chem. C, 8(8), 2749 (2020)
  40. Zhang Y, Xia Z, Liu H, Yang M, Lin L, Li Q, Sens. Actuators B-Chem., 188, 496 (2013)
  41. Huang X, Luo L, Chen GX, Li Q, Mater. Lett., 241, 51 (2019)
  42. Wu H, Wei T, Li X, Yang J, Zhang J, Fan SH, Zhang H, J. Electrochem. Soc., 164(4), B147 (2017)
  43. Su X, Bromberg L, Tan KJ, Jamison TF, Padhye LP, Hatton TA, Environ. Sci. Technol. Lett., 4(4), 161 (2017)
  44. Ma QA, Ai SY, Yin HS, Chen QP, Tang TT, Electrochim. Acta, 55(22), 6687 (2010)
  45. Li M, Huang XR, Guo Y, Shang YZ, Liu HL, Chinese Chem. Lett., 28(7), 1453 (2017)
  46. Gao L, Wu J, Gao D, ACS Nano, 5(8), 6736 (2011)
  47. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S, ACS Nano, 5(2), 1282 (2011)
  48. Christwardana M, Chung Y, Kwon Y, Kor. J. Chem. Eng., 34(11), 3009 (2017)
  49. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 1 (2016)
  50. Bunte C, Hussein L, Urban GA, J. Power Sources, 247, 579 (2014)
  51. Campbell AS, Murata H, Carmali S, Matyjaszewski K, Islam MF, Russell AJ, Biosens. Bioelectron., 86, 446 (2016)
  52. Krikstolaityte V, Oztekin Y, Kuliesius J, Ramanaviciene A, Yazicigil Z, et al., Electroanalysis, 25(12), 2677 (2013)
  53. Beneyton T, Wijaya IPM, Ben Salem C, Griffiths AD, Taly V, Chem. Commun., 49(11), 1094 (2013)
  54. Shim J, Kim GY, Moon SH, J. Electroanal. Chem., 653(1-2), 14 (2011)
  55. Kim RE, Hong SG, Ha S, Kim J, Enzyme Microb. Technol., 66, 35 (2014)
  56. Pinyou P, Conzuelo F, Sliozberg K, Vivekananthan J, Contin A, Poller S, Plumere N, Schuhmann W, Bioelectrochemistry, 106, 22 (2015)