Polymer(Korea), Vol.43, No.6, 846-851, November, 2019
TEDA 첨착 활성탄소섬유에 기반한 건조 및 습윤상태에서의 방사성 아이오딘 흡착특성연구
Adsorption Kinetics Under Dry and Wet Conditions of TEDA Doped ACF for CH3I Adsorption
E-mail:
초록
원자력 시설에서 자연환경으로 유출될 수 있는 방사성 물질 중 아이오딘은 인체에의 위해도가 널리 보고된 바 있으므로 이에 대한 안전한 저감연구가 필요하다. 본 연구에서는 기존 흡착제 대비 높은 비표면적 및 흡착 용이성으로 각광받고 있는 활성탄소섬유(ACF)를 대상으로 triethylenediamine(TEDA) 첨착을 하고 그에 따른 기기분석 및 흡착실험을 진행하였다. TEDA를 첨착한 활성탄소섬유(T-ACF)는 일반 ACF 대비 11.97%의 비표면적 감소를 나타내었으나, C=C 또는 C-H의 표면 관능기가 C-N으로 치환됨 또한 확인되었다. 이러한 amine 그룹은 아이오딘의 흡착에 유리하게 작용될 수 있으며, 흡착시험 결과 역시 T-ACF가 일반 ACF 대비 건조상태 및 습윤상태에서 각각 30.55 및 5.56% 증가함을 확인하였다. 마지막으로, 흡착등온식에서는 모든 샘플들이 건조상태 및 습윤상태에서 Freundlich 식보다는 Langmuir 식에 더 적합함을 확인할 수 있었다.
Radioactive isotopes of iodine has been reported as deleterious for living organisms. With the rapid development of nuclear industry and the prevalence around the globe, there is an urgent need to control the possibility of iodine-release. Within the paper, we observed the adsorption experiments of triethylenediamine doped activated carbon fiber (T-ACF) onto CH3I. T-ACF revealed 11.97% decrease in specific surface area when compared to ACF, but showed transition of C=C or C-H bond to C-N bond. In terms of the maximum adsorption capacity (qmax), T-ACF was found to have 30.55 and 5.56% more qmax when compared to ACF under dry and wet conditions, respectively. Given that, postintroduced amine groups after the triethylenediamine (TEDA) treatment composed a preferable environment on the carbonaceous surface for CH3I adsorption. Lastly, adsorption experiments suggested that all the samples favored the Langmuir model in both dry and wet conditions.
Keywords:activated carbon fiber;radioactive materials;methyl iodide;adsorption;surface functional groups
- Beaugelin-Seiller K, Gilbin R, Reygrobellet S, Garnier-Laplace J, Environ. Pollut., 249, 189 (2019)
- Minami K, Funabashi T, Honda K, Takahashi A, Sakurai K, Kanai R, Kawamoto T, Water Res., 154, 28 (2019)
- Abdel-Galil EA, Hassan RS, Eid MA, Appl. Radiat. Isot., 149, 91 (2019)
- Aneheim E, Bernin D, Foreman MRS, Nucl. Eng. Des., 328, 228 (2018)
- Foreman MRSJ, Cogent Chem., 1, 104911 (2015)
- Kosaka K, Asami M, Kobashigawa N, Ohkubo K, Terada H, Kishida N, Akiba M, Water Res., 46, 4397 (2012)
- Hirose K, J. Environ. Radioact., 111, 13 (2012)
- Amano H, Akiyama M, Chunlei B, Kawamura T, Kishimoto T, Kuroda T, Watanabe Y, J. Environ. Radioact., 111, 42 (2012)
- Li XM, Chen G, Ma JT, Jia Q, Sep. Purif. Technol., 210, 995 (2019)
- Harijan DKL, Chandra V, Yoon T, Kim KS, J. Hazard. Mater., 344, 576 (2018)
- Huve J, Ryzhikov A, Nouali H, Lalia V, Auge G, Daou TJ, RSC Adv., 8, 29248 (2018)
- Gonzalez-Garcia CM, Gonzalez JF, Roman S, Fuel Process. Technol., 92(2), 247 (2011)
- Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M, J. Power Sources, 101(1), 109 (2001)
- Dabrowski A, Podkoscielny P, Hubicki Z, Barczak M, Chemosphere, 58, 1049 (2005)
- Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A, J. Am. Chem. Soc., 122(29), 7116 (2000)
- Kumita M, Yamawaki N, Shinohara K, Higashi H, Kodama A, Kobayashi N, Otani Y, Int. J. Refrig., 94, 127 (2018)
- Xi X, Chung DDL, Carbon, 145, 734 (2019)
- Kato S, Minowa Y, Murata M, Harada Y, Ishizaki N, Jpn J. Health Phys., 21, 9 (1986)
- Lee HM, Kwac LK, An KH, Park SJ, Kim BJ, Energy Conv. Manag., 125, 347 (2016)
- Zhao X, Ma X, Zheng P, Chemosphere, 202, 298 (2018)
- Hwang JS, Lee CH, Cho KH, Kim MS, Kim CJ, Ryu SK, Rhee BS, Korean Chem. Eng. Res., 33, 551 (1995)
- El Akrami HA, Yardim MF, Ekinci E, Fuel, 79(5), 497 (2000)
- Choi BK, Kwac LK, Yoon KE, Seo MK, Park SJ, Textile Sci. Eng., 51, 174 (2014)
- Lascola R, Knight DA, Mohtadi R, Sivasubramanian P, Zidan R, Int. J. Hydrog. Energy, 38(30), 13368 (2013)
- Ebadi A, Mohammadzadeh JSS, Khudiev A, Adsorption, 15, 65 (2009)
- Ghezini R, Sassi M, Bengueddach A, Microporous Mesoporous Mater., 113, 370 (2008)
- Leofanti G, Padovan M, Tozzola G, Venturelli B, Catal. Today, 41(1-3), 207 (1998)
- Kumar A, Kumar S, Kumar S, Gupta DV, J. Hazard. Mater., 147(1-2), 155 (2007)
- Qu WY, Yuan T, Yin GJ, Xu SA, Zhang Q, Su HJ, Fuel, 249, 45 (2019)
- Raymundo-Pinero E, Cazorla-Amoros D, Linares-Solano A, Find J, Wild U, Schlogl R, Carbon, 40, 597 (2002)
- Li J, Ng DHL, Song P, Kong C, Song Y, Yang P, Biomass Bioenerg., 75, 189 (2015)
- Gonzalez-Garcia CM, Gonzalez JF, Roman S, Fuel Process. Technol., 92(2), 247 (2011)
- Ho K, Moon S, Lee HC, Hwang YK, Lee CH, J. Hazard. Mater., 368, 550 (2019)
- Zengin A, Caykara T, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 32, 1107 (2012)
- Chun H, Kang J, Han B, Phys. Chem. Chem. Phys., 18, 32050 (2016)
- Lee JJ, Korean Chem. Eng. Res., 53(1), 64 (2015)
- Ciobanu G, Harja M, Rusu L, Mocanu AM, Luca C, Korean J. Chem. Eng., 31(6), 1021 (2014)
- Dural MU, Cavas L, Papageorgiou SK, Katsaros FK, Chem. Eng. J., 168(1), 77 (2011)