Polymer(Korea), Vol.43, No.6, 852-861, November, 2019
셀룰로오스 아세테이트-g-폴리(L-락트산)의 합성과 분석
Synthesis and Characterization of Cellulose Acetate-g-Poly(L-lactic acid)
E-mail:
초록
셀룰로오스 아세테이트(CA)를 폴리(L-락트산) (PLA)과 블렌드시키면 생분해성이 향상될 것으로 기대되지만 두 고분자 사이에 혼화성이 없어 물성 저하가 심해 사용하기 곤란하다. 본 연구에서는 이들 블렌드계의 상용화제로 사용될 수 있는 CA-g-PLA를 L-락타이드의 개환중합을 이용하여 합성하였다. CA에 대한 L-락타이드의 무게비와 반응 시간을 달리하여 여러가지 그래프트율을 갖는 CA-g-PLA를 얻고, 이들의 그래프트율, 치환도 등의 특성을 열중량분석기(TGA), 젤투과 크로마토그래피, FTIR, 1H NMR 분광분석기를 사용하여 분석하였다. TGA와 1H NMR 분석에 의한 그래프트율이 서로 일치하였으며, 그래프트 반응 시 사용한 CA에 대한 L-락타이드의 비율이 커지고 반응 시간이 길어질수록 그래프트율이 크게 나타났다. 모든 분석 결과에서 CA-g-PLA는 CA와 PLA이 단순 혼합이 아닌 공중합체로서의 특성을 나타내었다.
Although blends of cellulose acetate (CA) and poly(L-lactic acid) (PLA) would show good biodegradability, the mechanical property deterioration of the blends due to the immiscibility of the two polymers refrains their using. In this study, CA-g-PLA which could be used as a compatibilizer of the blends was synthesized via a ring-opening polymerization of L-lactide. CA-g-PLAs with various graft yields were synthesized by varying the weight ratio of L-lactide to CA and reaction time. Then the properties of the CA-g-PLA such as graft yield and degree of the substitution were characterized by using TGA, GPC, FTIR, and 1H NMR spectroscopy. Graft yields of the CA-g-PLA copolymers were determined by both TGA and 1H NMR analysis. The graft yield of CA-g-PLA increased with increasing the weight ratio of L-lactide to CA up to 10:1 and the grafting time up to 16 hours at 130 °C. All the analysis results indicated that CA-g- PLA exhibits copolymer properties instead of simple mixture properties of CA and PLA.
Keywords:cellulose acetate;poly(L-lactic acid);graft yield;thermogravimetric analysis (TGA);proton nuclear magnetic resonance (1H NMR)
- Mohanty AK, Wibowo A, Misra M, Drzal LT, Polym. Eng. Sci., 43(5), 1151 (2003)
- Albarez-Chabez CR, Edwards S, Moure-Eraso R, Geiser K, J. Clean Prod., 23, 47 (2012)
- Ghiya VP, Dave V, Gross RA, Mccarthy SP, J. Macromol. Sci., 33, 627 (2006)
- Park HM, Misra M, Drzal LT, Mohanty AK, Biomacromol., 5, 2281 (2004)
- Nampoothiri KM, Nair NR, John RP, Biores. Tech., 101, 8493 (2010)
- Kowalski A, Duda A, Penczek S, Macromolecules, 33(20), 7359 (2000)
- Ogata N, Tatsushima T, Nakane K, Sasaki K, Ogihara T, J. Appl. Polym. Sci., 85(6), 1219 (2002)
- Quintana R, Persenaire O, Lemmouchi Y, Bonnaud L, Dubois P, Eur. Polym. J., 57, 30 (2014)
- Nikolic L, Ristic I, Adnadjevic B, Nikolic V, Jovanovic J, Stankovic M, Sensors, 10, 5063 (2010)
- Kricheldorf HR, Kreiser-Saunders I, Boettcher C, Polym., 36, 1253 (1995)
- Kim SH, Han YK, Kim YH, Hong SI, Macromol. Chem. Phys., 193, 1623 (1992)
- Garlotta D, J. Polym. Environ., 9, 63 (2001)
- Qian HT, Wohl AR, Crow JT, Macosko CW, Hoye TR, Macromolecules, 44(18), 7132 (2011)
- Khabbaz F, Karlsson S, Albertsson AC, J. Appl. Polym. Sci., 78(13), 2369 (2000)
- Dechy-Cabaret O, Martin-Vaca B, Bourissou D, Chem. Rev., 104(12), 6147 (2004)
- Monga S, Kaushik A, Gupta B, Polym. Plast. Tech. Eng., 55, 1819 (2016)
- Erbetta CDC, Alves RJ, Freitas RF, J. Biomater. Nanobiotech., 3, 208 (2012)
- Katiyar V, Nanavati H, Polym. Chem., 1, 1491 (2010)
- Zavastin D, Cretescu I, Bezdadea M, Savic J, Colloids Surf. A: Physicochem. Eng. Asp., 370, 120 (2010)
- Dods SR, Hardick O, Stevens B, Bracewell DG, J. Chromatogr. A, 1376, 74 (2015)
- Bao J, Han L, Shan G, Bao Y, Pan P, J. Phys. Chem., 119, 12689 (2015)
- Lonnberg H, Zhou Q, Brumer H III, Hult A, Biomacromol., 7, 2178 (2006)
- Sodergard A, Stolt M, Poly(lactic acid): Synthesis, Structures, Properties, Processing, and Application, Wiley, N.Y., p 27 (2010).
- Ho C, Wang C, Lin C, Lee Y, Polym., 49, 3902 (2008)
- Yoo DK, Kim D, Lee DS, Macromol. Res., 14(5), 510 (2006)
- Nampoothiri KM, Nair NR, John RP, Bioresour. Technol., 101(22), 8493 (2010)
- Kowsaka K, Okaima K, Kamide K, Polym. J., 18, 843 (2006)
- Goodlett VW, Patton HW, Polym. Chem., 9, 155 (1971)
- Jacobsen S, Degee P, Dubois P, Jerome R, Polym. Eng. Sci., 7, 1311 (1999)
- Choi K, Choi M, Park T, Ha C, Eur. Polym. J., 49, 2356 (2013)