화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.79, 226-235, November, 2019
Total-recycling partial-discard strategy for improved performance of simulated moving-bed chromatography
E-mail:
Simulated moving-bed (SMB) chromatography has become one of the most useful techniques for difficult separations, such as enantiomer separations. We propose a novel “total-recycling partial-discard” (TR- PD) SMB operation strategy in which a portion of the product is temporarily stored or treated and then totally recycled as an additional feed. This new strategy can attain high purities with minimal recovery losses by varying the discard amount and discard length through changes in the effluent flow rates within a switching period. Remarkably, this method can achieve considerably higher extract purity and raffinate recovery. By using varied effluent flow rates during a switching period and intermittent evaporation steps for concentrating discarded portions, the TR-PD operation can overcome the limitations of the previously suggested fractionation and feedback SMB and recycling partial-discard operations, which have difficulties in recycling all of the discarded portions.
  1. Faria RP, Rodrigues AE, J. Chromatogr. A, 1421, 82 (2015)
  2. Minceva M, Gomes PS, Meshko V, Rodrigues AE, Chem. Chem. Eng. J, 140, 305 (2008)
  3. Rajendran A, Paredes G, Mazzotti M, J. Chromatogr. A, 1216, 709 (2009)
  4. Yu YY, Wood KR, Liu YA, Ind. Eng. Chem. Res., 54(46), 11576 (2015)
  5. Zhang Z, Mazzotti M, Morbidelli M, Korean J. Chem. Eng., 21(2), 454 (2004)
  6. Rodrigues A, Simulated moving bed technology: principles, design and process applications, Butterworth-Heinemann, 2015.
  7. Aniceto JP, Silva CM, Sep. Purif. Rev., 44, 41 (2015)
  8. Broughton D, Chem. Eng. Prog., 66, 70 (1970)
  9. Broughton DB , Sucrose extraction from aqueous solutions featuring simulated moving bed, 1983, U.S. Patent No. 4,404,037.
  10. Juza M, Mazzotti M, Morbidelli M, Trends Biotechnol., 18, 108 (2000)
  11. Gomes PS, Rodrigues AE, Chem. Eng. Technol., 35(1), 17 (2012)
  12. Kim KM, Lee JW, Kim S, da Silva FVS, Seidel-Morgenstern A, Lee CH, Chem. Eng. Technol., 40(12), 2163 (2017)
  13. Ludemann-Hombourger O, Nicoud RM, Bailly M, Sep. Sci. Technol., 35(12), 1829 (2000)
  14. Schramm H, Kaspereit M, Kienle A, Seidel-Morgenstern A, J. Chromatogr. A, 1006, 77 (2003)
  15. Zhang Z, Mazzotti M, Morbidelli M, J. Chromatogr. A, 1006, 87 (2003)
  16. Gomes PS, Rodrigues AE, Sep. Sci. Technol., 42(2), 223 (2007)
  17. Katsuo S, Mazzotti M, J. Chromatogr. A, 1217, 1354 (2010)
  18. Song JR, Park HM, Kim JI, Mai NL, Koo YM, Korean J. Chem. Eng., 36(1), 109 (2019)
  19. Zang Y, Wankat PC, Ind. Eng. Chem. Res., 2504 (2002).
  20. Mun S, J. Chromatogr. A, 1217, 6522 (2010)
  21. Song JY, Kim KM, Lee CH, J. Chromatogr. A, 1471, 102 (2016)
  22. Song JY, Oh D, Lee CH, J. Chromatogr. A, 1403, 104 (2015)
  23. Kim KM, Lee CH, J. Chromatogr. A, 1311, 79 (2013)
  24. Bae YS, Lee CH, J. Chromatogr. A, 1122, 161 (2006)
  25. Keßler LC, Seidel-Morgenstern A, J. Chromatogr. A, 1207, 55 (2008)
  26. Kim KM, Lee HH, Lee CH, Ind. Eng. Chem. Res., 51(29), 9835 (2012)
  27. Chung JW, Kim KM, Yoon TU, Kim SI, Jung TS, Han SS, Bae YS, J. Chromatogr. A, 1529, 72 (2017)
  28. Lee CH, Byeon SH, Holder GD, J. Chem. Eng. Jpn., 29(4), 683 (1996)
  29. Guiochon G, Golshan-Shirazi S, Katti A, Fundamentals of nonlinear and preparative chromatography, Academic Press, 1994.
  30. Migliorini C, Mazzotti M, Morbidelli M, J. Chromatogr. A, 827, 161 (1998)