화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.79, 210-216, November, 2019
Preparation of porous PtAuCu@Pt core-shell catalyst for application to oxygen reduction
E-mail:, ,
Designing a Pt-based catalyst with high oxygen reduction reaction (ORR) performance is very important for the improvement of the economic feasibility of polymer electrolyte fuel cells. Herein, we suggest a method to prepare a Pt-based core-shell catalyst with high ORR activity and durability by galvanic displacement between Cu on a thermally annealed sample of (PtxAuy)1Cu5/C-HT and Pt ions. The resultant catalysts ((PtxAuy)1Cu5@Pt/C) showed a porous core.shell structure with a Pt-enriched surface. The composition of (PtxAuy)1Cu5/C-HT influenced the physical properties of the resultant (PtxAuy)1- Cu5@Pt/C catalysts. (PtxAuy)1Cu5@Pt/C catalysts exhibited better ORR performance than a commercial Pt/ C one and their performance varied with the composition. Among the catalysts examined, (Pt1Au0.1)1Cu5@Pt/C showed the best ORR activity. Specifically, it delivered a mass and specific activity of 0.660 mA/mgPGM and 1506.2 mA/cm2 Pt at 0.9 V (vs. RHE), respectively. These are 2.7 and 4.2 times higher than corresponding values obtained for Pt/C. In an accelerated degradation test, addition of Au proved beneficial for the design of a highly durable catalyst. The effect of the Au content on the physical properties and ORR performance of catalysts was interpreted in detail.
  1. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT, Appl. Catal. B: Environ., 56(1-2), 9 (2005)
  2. Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME, J. Power Sources, 131(1-2), 41 (2004)
  3. Gamburzev S, Appleby AJ, J. Power Sources, 107(1), 5 (2002)
  4. Yuan XZ, Wang HJ, Sun JC, Zhang JJ, Int. J. Hydrog. Energy, 32(17), 4365 (2007)
  5. Othman R, Dicks AL, Zhu ZH, Int. J. Hydrog. Energy, 37(1), 357 (2012)
  6. Wu G, Chen Z, Artyushkova K, Garzon FH, Zelenay P, ECS Trans., 16, 159 (2008)
  7. Higgins DC, Chen ZW, Can. J. Chem. Eng., 91(12), 1881 (2013)
  8. Zagal JH, Bedioui F, Dodelet JP, N4-Macrocyclic Metal Complexes, vol. 1 pp.83 (2006).
  9. Ishihara A, Ohgi Y, Matsuzawa K, Mitsushima S, Ota K, Electrochim. Acta, 55(27), 8005 (2010)
  10. Chen Z, Higgins D, Yu A, Zhang L, Zhang J, Energy Environ. Sci., 4, 3167 (2011)
  11. Serov A, Robson MH, Artyushkova K, Atanassov P, Appl. Catal. B: Environ., 127, 300 (2012)
  12. Peng H, Liao S, Liang H, Yang L, Luo F, Song H, Zhong Y, Zhang B, Sci. Rep., 3 (2013)
  13. Xiong L, Manthiram A, J. Electrochem. Soc., 152, 697 (2005)
  14. Liu J, Lan J, Yang L, Wang F, Yin Y, ACS Sustain. Chem. Eng., 47, 12984 (2019)
  15. Phuong VTH, Vietnam J. Sci. Technol, 56, 81 (2018)
  16. Jayasayee K, Van Veen JAR, Manivasagam TG, Celebi S, Hensen EJM, de Bruijn FA, Appl. Catal. B: Environ., 111, 515 (2012)
  17. Chen S, Ferreira PJ, Sheng WC, Yabuuchi N, Allard LF, Shao-Horn Y, J. Am. Chem. Soc., 130(42), 13818 (2008)
  18. Chen Y, Liang Z, Yang F, Liu Y, Chen S, J. Phys. Chem. C, 115, 24073 (2011)
  19. Oezaslan M, Hasche F, Strasser P, J. Phys. Chem. Lett., 4, 3273 (2013)
  20. Li BS, Chan SH, Int. J. Hydrog. Energy, 38(8), 3338 (2013)
  21. Wang C, Chi MF, Li DG, Strmcnik D, van der Vliett D, Wang GF, Komanicky V, Chang KC, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR, J. Am. Chem. Soc., 133(36), 14396 (2011)
  22. Mani P, Srivastava R, Strasser P, J. Phys. Chem. C, 112, 2770 (2008)
  23. Mani P, Srivastava R, Strasser P, J. Power Sources, 196(2), 666 (2011)
  24. Jung N, Sohn Y, Park JH, Nahm KS, Kim P, Yoo SJ, Appl. Catal. B: Environ., 196, 199 (2016)
  25. Sohn Y, Park JH, Kim P, Joo JB, Curr. Appl. Phys., 15(9), 993 (2015)
  26. Ma Y, Zhang H, Zhong H, Xu T, Jin H, Geng X, Catal. Commun., 11, 434 (2010)
  27. Chereyko S, Kulyk N, Chung CH, Langmuir, 28(6), 3306 (2012)
  28. Yang J, Chen X, Yang X, Ying JY, Energy Environ. Sci., 5, 8976 (2012)
  29. Xia BY, Wu HB, Wang X, Lou XW, J. Am. Chem. Soc., 134(34), 13934 (2012)
  30. Bele M, Jovanovic P, Pavlisic A, Jozinovic B, Zorko M, Recnik A, Gaberscek M, Chem. Commun., 50, 13124 (2014)
  31. Joo JB, Kim YJ, Kim W, Kim ND, Kim P, Kim Y, Lee YW, Yi J, Korean J. Chem. Eng., 25(3), 431 (2008)
  32. Bae SJ, Yoo SJ, Lim Y, Kim S, Lim Y, Choi J, Nahm KS, Hwang SJ, Lim TH, Kim SK, Kim P, J. Mater. Chem., 22, 8820 (2012)
  33. Mohl M, Kumar A, Reddy ALM, Kukovecz A, Konya Z, Kiricsi I, Vajtai R, Ajayan PM, J. Phys. Chem. C, 114, 389 (2010)
  34. Lu XM, Tuan HY, Chen JY, Li ZY, Korgel BA, Xia YN, J. Am. Chem. Soc., 129(6), 1733 (2007)
  35. Oezaslan M, Heggen M, Strasser P, J. Am. Chem. Soc., 134, 514 (2011)
  36. Mani P, Srivastava R, Strasser P, J. Phys. Chem. C, 112, 2270 (2008)
  37. Wang C, Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR, Nano Lett., 11, 919 (2011)
  38. Zhang J, Sasaki K, Sutter E, Adzic RR, Science, 315, 220 (2007)