화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.79, 115-123, November, 2019
α-MnO2 nanorod/boron nitride nanoplatelet composites for high-performance nanoscale dielectric pseudocapacitor applications
E-mail:,
We demonstrate the synthesis of a composite of α-MnO2 nanorods and dielectric boron nitride nanoplatelets(BNNPs) as an electrode material for application in nanoscale dielectric pseudocapacitors. The optimize nanocomposite delivers a significantly high specific capacitance (890 F/g at 0.41 A/g), which is >72% of the theoretical specific capacitance of α-MnO2 at a mass loading of ca. 6 wt%. Pure BNNPs exhibit negligible charge storage capacity with a specific capacitance of 1.30 F/g at 0.024 A/g. The BNNPs increase the amount of K+ insertion/extraction and the conductivity of α-MnO2 nanorods by lowering the charge transfer resistance at the electrode-electrolyte interface. This is due to the electrical polarization of dielectric BNNPs during charging and discharging, which increases the rate and amount of K+ insertion or extraction induce by electrostatic force. The nanocomposite shows good capacity retention (94.12% after 2000 cycles) with high energy and power density. This research opens up a new avenue for the development of new types of nanoscale dielectric pseudocapacitors with high capacitance by exploring other suitable metal-oxides and nanoscale dielectric material composites.
  1. Bon CYJ, Mohammed L, Kim SJ, Manasi M, Isheunesu P, Lee KS, Ko JM, J. Ind. Eng. Chem., 68, 173 (2018)
  2. Barai HR, Rahman MM, Roy M, Barai P, Joo SW, Mater. Sci. Semicond. Process, 90, 245 (2019)
  3. Yong HS, Park HB, Jung JW, Jung CS, J. Ind. Eng. Chem., 76, 429 (2019)
  4. Barai HR, Rahman MM, Joo SW, Electrochim. Acta, 253, 563 (2017)
  5. Barai HR, Rahman MM, Joo SW, J. Power Sources, 372, 227 (2017)
  6. Ozcelik VO, Ciraci S, J. Phys. Chem. C, 117, 15327 (2013)
  7. Lee HU, Jin JH, Kim SW, J. Ind. Eng. Chem., 71, 184 (2019)
  8. Wang YG, Xia YY, Adv. Mater., 25(37), 5336 (2013)
  9. Stoller MD, Park S, Zhu Y, An J, Ruoff RS, Nano Lett., 8, 3498 (2008)
  10. Sorel S, Khan U, Colemana JN, Appl. Phys. Lett., 101, 103106 (2012)
  11. Han F, Meng G, Zhou F, Song L, Li X, Hu X, Zhu X, Wu B, Wei B, Sci. Adv., 1, e15006 (2015)
  12. Ozcelik VO, Ciraci S, Phys. Rev. B, 91, 195445 (2015)
  13. Stengel M, Spaldin NA, Nature, 443, 679 (2006)
  14. Batra S, Cakmak M, Nanoscale, 7, 20571 (2015)
  15. Xie X, Zhou M, Lv L, Liu S, Shen J, Ploymer, 132, 193 (2017)
  16. Lee JY, Connor ST, Cui Y, Peumans P, Nano Lett., 8, 689 (2008)
  17. Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
  18. Salunkhe RR, Kaneti YV, Kim J, Kim JH, Yamauchi Y, Accounts Chem. Res., 49, 2796 (2016)
  19. Zhong Y, Xia X, Shi F, Zhan J, Tu J, Fan HJ, Adv. Sci., 3, 150028 (2016)
  20. Augustyn V, Simon P, Dunn B, Energy Environ. Sci., 7, 1597 (2014)
  21. Huang Y, Liang J, Chen Y, Small, 8, 1805 (2012)
  22. Tsai WY, Lin R, Murali S, Zhang LL, McDonough JK, Ruoff RS, Taberna PL, Gogotsi Y, Simon P, Nano Energy, 2, 403 (2013)
  23. Yan W, Kim JY, Xing W, Donavan KC, Ayvazian T, Penner RM, Chem. Mater., 24, 2382 (2012)
  24. El-Kady MF, Ihns M, Li M, Whang JY, Mousavi MF, Chaney L, Lech AT, Kaner RB, PNAS, 112, 4233 (2015)
  25. Zheng JP, Cygan PJ, Jow TR, J. Electrochem. Soc., 142(8), 2699 (1995)
  26. Xu C, Kang F, Li B, Du H, J. Mater. Res., 25, 1421 (2010)
  27. Devaraj S, Munichandraiah N, J. Phys. Chem. C, 12, 4406 (2008)
  28. Gambou-Boscaa A, Belanger D, J. Mater. Chem. A, 2, 6463 (2014)
  29. Ghodbane O, Pascal JL, Favier F, ACS Appl. Mater. Interfaces, 1, 1190 (2009)
  30. Adeel M, Rahman MM, Lee JJ, Biosens. Bioelectron., 126, 143 (2019)
  31. Li Q, Zhang G, Liu F, Han K, Gadinski MR, Xiong C, Wang Q, Energy Environ. Sci., 8, 922 (2015)
  32. Hattori Y, Taniguchi T, Watanabe K, Nagashio K, ACS Nano, 9, 916 (2015)
  33. Du M, Wu Y, Hao X, CrystEngComm, 15, 1782 (2013)
  34. Barai HR, Banerjee AN, Hamnabard N, Joo SW, RSC Adv., 6, 78887 (2016)
  35. Kumari S, Sharma OP, Gusain R, Mungse HP, Kukrety A, Kumar N, Sagimura H, Khatri OP, ACS Appl. Mater. Interfaces, 7, 3708 (2015)
  36. Luo J, Zhu HT, Fan HM, Liang JK, Shi HL, Rao GH, Li JB, Du ZM, Shen ZX, J. Phys. Chem. C, 112, 12594 (2008)
  37. Geick R, Perry CH, Rupprecht G, Phys. Rev., 146, 543 (1966)
  38. Gorbachev RV, Riaz I, Nair RR, Jalil R, Britnell L, Belle BD, Hill EW, Noveselov KS, Watanabe K, Taniguchi T, Small, 7, 465 (2011)
  39. Gao T, Fjellvag H, Norby P, Anal. Chim. Acta, 648, 235 (2009)
  40. Jalaly M, Gotor FJ, Semnan M, Sayagues MJ, Sci. Rep., 7, 3453 (2017)
  41. Lee SW, Kim J, Chen S, Hammond PT, Yang SH, ACS Nano, 7, 3889 (2010)
  42. Li QA, Liu JH, Zou JH, Chunder A, Chen YQ, Zhai L, J. Power Sources, 196(1), 565 (2011)
  43. Wang JG, Yang Y, Huang ZH, Kang F, J. Mater. Chem., 22, 16943 (2012)
  44. Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD, J. Electrochem. Soc., 157(7), A812 (2010)
  45. Alfaruqi MH, Gim J, Kim S, Song J, Jo J, Kim S, Mathew V, Kim J, J. Power Sources, 288, 320 (2015)
  46. Verma V, Jindal VK, Dharamvir K, Nanotechnology, 18, 435711 (2007)
  47. Jabeen N, Xia Q, Savilov SV, Aldoshin SM, Yu Y, Xia H, ACS Appl. Mater. Interfaces, 8, 33732 (2016)
  48. Wang J, Polleux J, Lim J, Dunn B, J. Phys. Chem. C, 111, 14925 (2007)
  49. Gund GS, Dubal DP, Chodankar NR, Cho JY, Gomez-Romero P, Park C, Lokhande CD, Sci. Rep., 5, 12454 (2014)
  50. Li LH, Santos EJG, Xing T, Cappelluti E, Roldan R, Chen Y, Watanabe K, Taniguchi T, Nano Lett., 15, 218 (2015)
  51. Ghosh S, Polaki SR, Sahoo G, Jin EM, Kamruddin M, Cho JS, Jeong SM, J. Ind. Eng. Chem., 72, 107 (2019)