화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.5, 728-734, September, 2019
은, 은 코팅된 구리, 그래핀 첨가에 따른 도전성 접착제의 성능 비교
Comparative Performances of Electrically Conductive Adhesives by Incorporation of Silver, Silver-Coated Copper, and Graphene
E-mail:
초록
전도성 필러의 종류에 따른 도전성 접착제의 전기적, 접착특성 변화에 대해 살펴보았다. 은, 은 코팅된 구리, 그래핀을 전도성 필러로 사용하였고 에폭시 기재와 혼합하여 제조되었다. 필러 함량을 고정한 상태에서 전기적 특성을 확인해 본 결과 순수한 은을 함유한 접착제에서 3.6×10-4 Ω·cm의 저항을 보여 다른 필러에 비해 우수한 전도성을 보였고 실리콘 기판과 금속 리드프레임간 접착력은 그래핀의 함량에 비례하여 저하되는 것으로 나타났다. 85 ℃, 85% 상대습도 환경에서 특성 변화를 살펴보면 은을 함유한 접착제는 노출 시간에 관계없이 낮은 저항값을 유지한 반면 은/은 코팅된 구리, 은/은 코팅된 구리/그래핀이 첨가된 접착제는 추가적인 경화로 인해 오히려 낮아졌다. 접착력은 필러의 종류에 상관없이 노출 시간에 따라 감소하였다.
The effect of conductive fillers on electrical and adhesion properties of electrically conductive adhesives (ECAs) has been investigated. The ECAs were prepared by incorporating different conductive fillers such as silver (Ag), silver-coated copper (AgCu), and graphene into epoxy binder. At constant filler concentration, the Ag-filled ECAs exhibited the lowest bulk resistivity at around 3.6×10-4 Ω·cm as compared to the ECAs filled with Ag/AgCu and Ag/AgCu/graphene. Adhesion strength between silicon die and metallic lead frame showed systematic drop upon addition of graphene. Under 85 ℃ and 85% humidity environment, the bulk resistivity of the Ag/AgCu and Ag/AgCu/graphene-filled ECAs decreased with aging time due to the increase of crosslink density while the Ag-filled ECAs remained stable. Adhesion strength decreased with aging time.
  1. Manikam VR, Cheong KY, IEEE Trans. Compon. Packag. Manuf. Technol. Part A, 1, 457 (2011)
  2. Li Y, Wong CP, Mater. Sci. Eng. R-Rep., 51, 1 (2006)
  3. Mir I, Kumar D, Int. J. Adhes. Adhes., 28, 362 (2008)
  4. Cui HW, Fan Q, Li DS, Int. J. Adhes. Adhes., 48, 177 (2014)
  5. Guan Y, Chen X, Li F, Gao H, Int. J. Adhes. Adhes., 30, 80 (2010)
  6. Jiang H, Moon KS, Li Y, Wong CP, Chem. Mater., 18, 2969 (2006)
  7. Ren HM, Zhang K, Matthew YM, Fu XZ, Sung R, Wong CP, J. Solid State Light, 1, 1 (2014)
  8. Zhang R, Lin W, Lawrence K, Wong CP, Int. J. Adhes. Adhes., 30, 403 (2010)
  9. Nishikawa H, Mikami S, Miyake K, Aoki A, Takemoto T, Mater. Trans., 51, 1785 (2010)
  10. Kim CK, Lee GJ, Lee MK, Rhee CK, Powder Technol., 263, 1 (2014)
  11. Santamaria A, Munoz ME, Fernandez M, Landa M, J. Appl. Polym. Sci., 129(4), 1643 (2013)
  12. Cui HW, Kowalczyk A, Li DS, Fan Q, Int. J. Adhes. Adhes., 44, 220 (2013)
  13. Ma H, Ma M, Zeng J, Guo X, Ma Y, Mater. Lett., 178, 181 (2016)
  14. Amoli BM, Trinidad J, Rivers G, Sy S, Russo P, Yu A, Zhou NY, Zhao B, Carbon, 91, 188 (2015)
  15. Yuan W, Xiao Q, Li L, Xu T, Appl. Therm. Eng., 103, 1067 (2016)
  16. Ma R, Kwon S, Zheng Q, Kwon HY, Kim JI, Choi HR, Baik S, Adv. Mater., 24(25), 3344 (2012)
  17. Zhang Y, Qi S, Wu X, Duan G, Synth. Met., 161, 516 (2011)
  18. Wu HP, Wu XJ, Ge MY, Zhang GQ, Wang YW, Jiang J, Compos. Sci. Technol., 67, 1182 (2007)
  19. Marcq F, Demont P, Monfraix P, Peigney A, Laurent C, Falat T, Courtade F, Jamin T, Microelectron Reliab., 51, 1230 (2011)
  20. Li H, Wong CP, IEEE Trans. Adv. Packag., 27, 165 (2004)
  21. Lu D, Wong CP, Tong QK, IEEE Trans. Compon. Packag. Manuf. Tech. C, 22, 228 (1999)
  22. Jiang H, Yim MJ, Lin W, Wong CP, IEEE Trans. Compon. Packag. Tech., 32, 754 (2009)
  23. Yosida Y, J. Appl. Phys., 87, 3338 (2000)