Applied Chemistry for Engineering, Vol.30, No.4, 415-420, August, 2019
비이온 계면활성제, 유화안정제 종류에 따른 O/W 유화 제형의 유변학적 특성 변화
Changes in Rheological Properties of O/W Emulsions according to the Type of Nonionic Surfactant and Emulsion Stabilizer
E-mail:
초록
비이온 계면활성제와 유화안정제가 O/W 유화 제형에 미치는 영향을 살펴보기 위하여 비이온 계면활성제와 유화안정제 종류를 달리한 여러 제형을 만들어 이들의 유변학적 특성을 비교하였다. 친수성 비이온 계면활성제는 polysorbate 60 (Tween 60), PEG-60 hydrogenated castor oil (HCO 60), octyldodeceth-16 (OD 16), ceteareth-6 olivate (Olivem 800) 등을 사용하였고, 유화안정제로는 cetyl alcohol, glyceryl monostearate, stearic acid 등을 각각 사용하였다. Octyldodeceth-16을 사용한 유화 제형에서만 상분리가 일어나고 나머지 제형은 모두 안정한 상을 유지하였다. 계면활성제 ceteareth-6 olivate와 유화안정제 cetyl alcohol을 혼합 사용한 제형의 점도, 경도, 크림성 등이 가장 높게 나타나고 유화된 입자 사이즈도 가장 큰 값으로 측정되었다. 이와 같은 결과는 유화 제형에 액정이 많이 생성되면서 네트워크 구조의 텍스처가 형성되었기 때문이다. 이 제형에서는 탄성적 특성이 크게 나타나고 힘이 가해지는 이력에 따라 점도 값이 달라지는 씩소트로픽 현상이 나타났다.
To investigate the effect of nonionic surfactant and emulsion stabilizer on O/W emulsions, various emulsion formulations with different types of nonionic surfactants and emulsion stabilizers were prepared and their rheological properties were compared. In this study, polysorbate 60 (Tween 60), PEG-60 hydrogenated castor oil (HCO 60), octyldodeceth-16 (OD 16), and ceteareth- 6 olivate (Olivem 800) were used as hydrophilic nonionic surfactants, whereas cetyl alcohol, glyceryl monostearate, and stearic acid as emulsion stabilizers. Phase separation occurred only in the emulsion formulation with octyldodeceth-16 and all other emulsion formulations maintained a stable phase. The viscosity, hardness, and creaminess of emulsion formulation using a mixture of ceteareth-6 olivate and cetyl alcohol were the highest, and the emulsified droplet size was also the largest. These results are due to the formation of a network structure texture with the development of a large amount of liquid crystal in the O/W emulsion. In this formulation, the value of elastic modulus was large and the thixotropic behavior, in which the viscosity varies with the history of external force, was observed.
- Rosen MJ, Kunjappu JT, Surfactants and Interfacial Phenomena, 4th ed., 1-44, John Wiley & Sons, Inc., NJ, USA (2012).
- Kang HH, Prospect. Ind. Chem., 4(2), 17 (2001)
- Lee DY, Jung CN, Suh KD, Choi HK, Park YH, J. Korean Ind. Eng. Chem., 6(6), 1124 (1995)
- Lee CH, Kim TG, Lee SG, Shin BR, Pyo HB, Seo JM, Yeon JY, J. Soc. Cosmet. Sci. Korea, 40(3), 227 (2014)
- Tadros T, Izquierdo P, Esquena J, Solans C, Adv. Colloid Interface Sci., 108, 303 (2004)
- Brooks BW, Richmond HN, Colloids Surf., 58, 131 (1991)
- Hong IK, Kim SI, Park BR, Choi J, Lee SB, Appl. Chem. Eng., 27(5), 527 (2016)
- Alam MM, Aramaki K, J. Oleo Sci., 63(2), 97 (2014)
- Choi MJ, Lee YM, Jin BS, J. Korean Oil Chem. Soc., 21, 279 (2004)
- Suzuki T, Takei H, Yamazaki SJ, J. Colloid Interface Sci., 129(2), 491 (1989)
- Madani K, Friberg S, Prog. Colloid Polym. Sci., 65, 164 (1978)
- Rehage H, Hoffmann H, J. Phys. Chem., 92(16), 4712 (1988)
- OTSUBO Y, PRUDHOMME RK, Rheol. Acta, 33(1), 29 (1994)
- Lavaselli SA, Pedemonte CI, Mazon JI, Lillini GJ, Pasquali RC, Riquelme B, Seri. Biomech., 27(3), 34 (2012)
- Zhang W, Liu L, J. Cosmet. Dermatol. Sci. Appl., 3, 139 (2013)
- Owen SC, Chan DPY, Shoichet MS, Nano Today, 7(1), 53 (2012)
- Zacchigna M, Cateni F, Drioli S, Bonora GM, Polymers, 3, 1076 (2011)
- Eccleston GM, J. Soc. Cosmet. Chem., 41, 1 (1990)
- Suzuki T, Cosmetic Science and Technology, 519-537, Elsevier, Amsterdam, Netherlands (2017).
- Kilcast D, Clegg S, Food Qual. Prefer., 13, 609 (2002)