화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.4, 415-420, August, 2019
비이온 계면활성제, 유화안정제 종류에 따른 O/W 유화 제형의 유변학적 특성 변화
Changes in Rheological Properties of O/W Emulsions according to the Type of Nonionic Surfactant and Emulsion Stabilizer
E-mail:
초록
비이온 계면활성제와 유화안정제가 O/W 유화 제형에 미치는 영향을 살펴보기 위하여 비이온 계면활성제와 유화안정제 종류를 달리한 여러 제형을 만들어 이들의 유변학적 특성을 비교하였다. 친수성 비이온 계면활성제는 polysorbate 60 (Tween 60), PEG-60 hydrogenated castor oil (HCO 60), octyldodeceth-16 (OD 16), ceteareth-6 olivate (Olivem 800) 등을 사용하였고, 유화안정제로는 cetyl alcohol, glyceryl monostearate, stearic acid 등을 각각 사용하였다. Octyldodeceth-16을 사용한 유화 제형에서만 상분리가 일어나고 나머지 제형은 모두 안정한 상을 유지하였다. 계면활성제 ceteareth-6 olivate와 유화안정제 cetyl alcohol을 혼합 사용한 제형의 점도, 경도, 크림성 등이 가장 높게 나타나고 유화된 입자 사이즈도 가장 큰 값으로 측정되었다. 이와 같은 결과는 유화 제형에 액정이 많이 생성되면서 네트워크 구조의 텍스처가 형성되었기 때문이다. 이 제형에서는 탄성적 특성이 크게 나타나고 힘이 가해지는 이력에 따라 점도 값이 달라지는 씩소트로픽 현상이 나타났다.
To investigate the effect of nonionic surfactant and emulsion stabilizer on O/W emulsions, various emulsion formulations with different types of nonionic surfactants and emulsion stabilizers were prepared and their rheological properties were compared. In this study, polysorbate 60 (Tween 60), PEG-60 hydrogenated castor oil (HCO 60), octyldodeceth-16 (OD 16), and ceteareth- 6 olivate (Olivem 800) were used as hydrophilic nonionic surfactants, whereas cetyl alcohol, glyceryl monostearate, and stearic acid as emulsion stabilizers. Phase separation occurred only in the emulsion formulation with octyldodeceth-16 and all other emulsion formulations maintained a stable phase. The viscosity, hardness, and creaminess of emulsion formulation using a mixture of ceteareth-6 olivate and cetyl alcohol were the highest, and the emulsified droplet size was also the largest. These results are due to the formation of a network structure texture with the development of a large amount of liquid crystal in the O/W emulsion. In this formulation, the value of elastic modulus was large and the thixotropic behavior, in which the viscosity varies with the history of external force, was observed.
  1. Rosen MJ, Kunjappu JT, Surfactants and Interfacial Phenomena, 4th ed., 1-44, John Wiley & Sons, Inc., NJ, USA (2012).
  2. Kang HH, Prospect. Ind. Chem., 4(2), 17 (2001)
  3. Lee DY, Jung CN, Suh KD, Choi HK, Park YH, J. Korean Ind. Eng. Chem., 6(6), 1124 (1995)
  4. Lee CH, Kim TG, Lee SG, Shin BR, Pyo HB, Seo JM, Yeon JY, J. Soc. Cosmet. Sci. Korea, 40(3), 227 (2014)
  5. Tadros T, Izquierdo P, Esquena J, Solans C, Adv. Colloid Interface Sci., 108, 303 (2004)
  6. Brooks BW, Richmond HN, Colloids Surf., 58, 131 (1991)
  7. Hong IK, Kim SI, Park BR, Choi J, Lee SB, Appl. Chem. Eng., 27(5), 527 (2016)
  8. Alam MM, Aramaki K, J. Oleo Sci., 63(2), 97 (2014)
  9. Choi MJ, Lee YM, Jin BS, J. Korean Oil Chem. Soc., 21, 279 (2004)
  10. Suzuki T, Takei H, Yamazaki SJ, J. Colloid Interface Sci., 129(2), 491 (1989)
  11. Madani K, Friberg S, Prog. Colloid Polym. Sci., 65, 164 (1978)
  12. Rehage H, Hoffmann H, J. Phys. Chem., 92(16), 4712 (1988)
  13. OTSUBO Y, PRUDHOMME RK, Rheol. Acta, 33(1), 29 (1994)
  14. Lavaselli SA, Pedemonte CI, Mazon JI, Lillini GJ, Pasquali RC, Riquelme B, Seri. Biomech., 27(3), 34 (2012)
  15. Zhang W, Liu L, J. Cosmet. Dermatol. Sci. Appl., 3, 139 (2013)
  16. Owen SC, Chan DPY, Shoichet MS, Nano Today, 7(1), 53 (2012)
  17. Zacchigna M, Cateni F, Drioli S, Bonora GM, Polymers, 3, 1076 (2011)
  18. Eccleston GM, J. Soc. Cosmet. Chem., 41, 1 (1990)
  19. Suzuki T, Cosmetic Science and Technology, 519-537, Elsevier, Amsterdam, Netherlands (2017).
  20. Kilcast D, Clegg S, Food Qual. Prefer., 13, 609 (2002)