화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.7, 713-719, July, 2019
Synthesis and Physical Properties of Proton Conducting Polymer Electrolytes Comprising PAM Cross-Linked Flexible Spacers
E-mail:
The design of novel proton exchange membranes with high conductivity and better dimensional stability has become increasingly important due to the need for applications in different devices. The present work shows the acid-doped and crosslinked polyacrylamide (PAM) networks including flexible spaces. To this end PAM was modified with 1,4-butanediol diglycidyl ether (BG) to form PAM35BG and PAM50BG networks, which would afford more space for protonated solvents. The reaction of PAM with BG was monitored by FTIR and 13C CP-MAS NMR. The polymer electrolytes were produced by acid doping at several stoichiometric ratios with respect to the monomer repeat unit of a host polymer. The resulting materials exhibited better thermal, chemical, and electrochemical stabilities and had distinct Tg values. Additionally, the pores of the PAM-BG materials were filled with H3PO4 to get PAM35BG0.5H3PO4 and PAM50BG1.0H3PO4. The doping enhanced the proton conductivities of the membranes as high as 0.003 S/cm at 120 °C under an anhydrous atmosphere. The proton diffusion mechanism and the dielectric relaxation were further examined using the complex modulus formalism, M*.
  1. Di Noto V, Negro E, Sanchez JY, Iojoiu C, J. Am. Ceram. Soc., 132, 2183 (2010)
  2. Asensio JA, Sanchez EM, Gomez-Romero P, Chem. Soc. Rev., 39, 3210 (2010)
  3. Lee DH, Choi S, Lee DW, Kim HT, Electrochimica Acta, 270, 402 (2018)
  4. Kerres JA, J. Membr. Sci., 185(1), 3 (2001)
  5. Li Q, He R, Jensen JO, Bjerrum NJ, Fuel. Cells., 4, 147 (2004)
  6. Li QF, Jensen JO, Savinell RF, Bjerrum NJ, Prog. Polym. Sci., 34, 449 (2009)
  7. Mecerreyes D, Grande H, Miguel O, Ochoteco E, Marcilla R, Cantero I, Chem. Mater., 16, 604 (2004)
  8. Weber J, Antonietti M, Thomas A, Macromolecules, 40(4), 1299 (2007)
  9. Weber J, Kreuer KD, Maier J, Thomas A, Adv. Mater., 20(13), 2595 (2008)
  10. Xiao L, Zhang H, Scanlon E, Ramanathan LS, Choe EW, Rogers D, Chem. Mater., 17, 5328 (2005)
  11. Ma YL, Wainright JS, Litt MH, Savinell RF, J. Electrochem. Soc., 151(1), A8 (2004)
  12. Sen U, Acar O, Bozkurt A, Ata A, J. Appl. Polym. Sci., 120(2), 1193 (2011)
  13. Sen U, Usta H, Acar O, Citir M, Canlier A, Bozkurt A, Ata A, Macromol. Chem. Phys., 216, 106 (2015)
  14. Acar O, Sen U, Bozkurt A, Ata A, J. Mater. Sci., 45(4), 993 (2010)
  15. Przyluski J, Poltarzewski Z, Wieczorek W, Polymer, 39(18), 4343 (1998)
  16. Raducha D, Wieczorek W, Florjanczyk Z, Stevens JR, J. Phys. Chem., 100(51), 20126 (1996)
  17. Stevens JR, Wieczorek W, Raducha D, Jeffrey KR, Solid State Ion., 97(1-4), 347 (1997)
  18. Tang QW, Lin JM, Wu JH, J. Appl. Polym. Sci., 108(3), 1490 (2008)
  19. Tang QW, Lin JM, Wu JH, Xu YW, Zhang CJ, J. Appl. Polym. Sci., 104(2), 735 (2007)
  20. Wieczorek W, Florjanczyk Z, Stevens JR, Electrochimica Acta, 40, 2327 (1995)
  21. Wieczorek W, Stevens JR, Polymer, 38(9), 2057 (1997)
  22. Simhadri JJ, Stretz HA, Oyanader M, Arce PE, Ind. Eng. Chem. Res., 49(23), 11866 (2010)
  23. Qin Q, Tang QW, Li QH, He BL, Chen HY, Wang X, Yang PZ, Int. J. Hydrog. Energy, 39(9), 4447 (2014)
  24. Bozkurt A, Meyer WH, Solid State Ion., 138(3-4), 259 (2001)
  25. Xu L, Che L, Zheng J, Huang G, Wu X, Chen P, Zhang L, Hu Q, RSC Adv., 4, 33269 (2014)
  26. Vilciauskas L, Tuckerman ME, Bester G, Paddison SJ, Kreuer KD, Nat. Chem., 4, 461 (2012)
  27. Bhatt AS, Bhat DK, Santosh MS, Tai C, J. Mater. Chem., 21, 13490 (2011)
  28. Mohomed K, Gerasimov TG, Moussy F, Harmon JP, Polymer, 46(11), 3847 (2005)
  29. Naik J, Bhajantri RF, J. Inorganic and Organometallic Polym. Mater., 28, 906 (2018).
  30. Aziz B, Abdullah OG, Saeed SR, Ahmed HM, Int. J. Electrochem. Sci., 13, 3812 (2018)
  31. Tang QW, Cai HY, Yuan SS, Wang X, Yuan WQ, Int. J. Hydrog. Energy, 38(2), 1016 (2013)