Polymer(Korea), Vol.42, No.6, 1052-1058, November, 2018
미세채널을 이용한 폴리(N-이소프로필아크릴아미드) 마이크로 하이드로젤의 합성 및 농도측정 센서 용도
Synthesis of Poly(N-isopropylacrylamide) Micro-hydrogel Using a Microfluidic Channel and Study on Concentration Sensor
E-mail:
초록
본 연구에서는 소프트리소그래피(soft lithography) 공정을 이용하여 폴리디메틸실록산(polydimethylsiloxane, PDMS) 재질의 미세채널을 제작하였고, 이를 활용하여 구형의 폴리(N-이소프로필아크릴아미드)(poly(N-isopropylacrylamide), PNIPAm) 미세-하이드로젤을 합성하였다. 합성된 미세-하이드로젤은 온도가 상승할수록 부피가 감소하였으며, 32 °C 주변에서 최저임계용액온도(lower critical solution temperature, LCST) 거동을 보였다. 미세-하이드로젤을 폴리비닐알코올(poly(vinyl alcohol), PVA) 용액 또는 염화나트륨(sodium chloride, NaCl) 용액에 담구었을 때, 용액의 농도 및 온도에 따른 미세-하이드로젤의 부피변화를 관찰하였다. 부피변화로부터 미세-하이드로젤에 포함된 물과 고분자의 부피분율 변화를 계산하였다. Flory-Huggins 이론을 도입하여 각 용액의 농도 및 온도에 따른 삼투압 변화를 확인하였다. 측정된 부피변화와 삼투압 변화 결과로부터 제조된 미세-하이드로젤은 온도 및 농도측정 센서로 활용가능함을 확인하였다.
In this study, PDMS microchannels were fabricated by using a soft lithography process. Poly(N-isopropylacrylamide) (PNIPAm) micro-hydrogel spheres were synthesized by using the microfluidic channel. The volume of synthesized micro-hydrogel was reduced as increasing temperature, exhibiting lower critical solution temperature (LCST) behavior at around 32 °C. The volume changes of the micro-hydrogels were monitored as they were immersed into poly(vinyl alcohol) (PVA) or sodium chloride (NaCl) solution. The effects of temperature and solution concentration on the volume of the micro-hydrogels were investigated. The osmotic pressures of the micro-hydrogels were calculated from the solid contents in the micro-hydrogel by using the Flory-Huggins theory. It was suggested that the micro-hydrogel can be used as a sensor detecting concentration of solution and temperature.
- Tice JD, Song H, Lyon AD, Ismagilov RF, Langmuir, 19(22), 9127 (2003)
- Okushima S, Nisisako T, Torii T, Higuchi T, Langmuir, 20(23), 9905 (2004)
- Chu LY, Kim JW, Shah RK, Weitz DA, Adv. Funct. Mater., 17(17), 3499 (2007)
- Shah RK, Kim JW, Agresti JJ, Weitz DA, Chu LY, Soft Matter, 4, 2303 (2008)
- Sugiura S, Szilagyi A, Sumaru K, Hattori K, Takagi T, Filipcsei G, Zrinyi M, Kanamori T, Lab Chip, 9, 196 (2008)
- Chen CH, Shah RK, Abate AR, Weitz DA, Langmuir, 25(8), 4320 (2009)
- Huang SQ, Lin BC, Qin JH, Electrophoresis, 32(23), 3364 (2011)
- Yoon J, Bian P, Kim J, McCarthy TJ, Hayward RC, Angew. Chem., 124, 7258 (2012)
- Hoffman AS, Adv. Drug Deliv. Rev., 64, 18 (2012)
- Koetting MC, Peters JT, Steichen SD, Peppas NA, Mater. Sci. Eng. R-Rep., 93, 1 (2015)
- Hwang MY, Kim SG, Lee HS, Muller SJ, Soft Matter, 13, 5785 (2017)
- Hwang MY, Kim SG, Lee HS, Muller SJ, Soft Matter, 14, 216 (2018)
- Tropmann A, Tanguy L, Koltay P, Zengerle R, Riegger L, Langmuir, 28(22), 8292 (2012)
- Lamberti A, Marasso SL, Cocuzza M, RSC Adv., 4, 61415 (2014)
- Li CF, Hu ZB, Li Y, J. Chem. Phys., 100(6), 4645 (1994)
- Yoshida R, Okano T, Biomedical Applications of Hydrogels Handbook, Springer, New York, 2010.
- Kim D, Kim D, Lee E, Yoon J, Biomicrofluidics, 10, 014127 (2016)
- Qiu Y, Park K, Adv. Drug Deliv. Rev., 53, 321 (2001)
- Trujillo V, Kim J, Hayward RC, Soft Matter, 4, 564 (2008)
- Kim J, Yoon J, Hayward RC, Nat. Mater., 9(2), 159 (2010)
- Jung JH, Kim J, Lee KY, Polym. Korea, 37(4), 478 (2013)
- Onal CD, Rus D, Bioinspir. Biomim., 8, 026003 (2013)
- Rus D, Tolley MT, Nature, 521(7553), 467 (2015)
- Yoon H, Lee J, Polym. Korea, 36(4), 455 (2012)
- Kim D, Wang S, Lee HS, Yoon J, Polym. Korea, 39(5), 788 (2015)
- Lim D, Lee E, Kim H, Park S, Beak S, Yoon J, Soft Matter, 11, 1606 (2016)
- Kim D, Lee HS, Yoon J, Sci. Rep., 6, 20921 (2016)
- Hirotsu S, Hirokawa T, Tanaka T, J. Chem. Phys., 87, 1392 (1987)
- Afroze F, Nies E, Berghmans H, J. Mol. Struct., 554, 55 (2000)
- Juodkazis S, Mukai N, Wakaki R, Yamaguchi A, Matsuo S, Misawa H, Nature, 408, 178 (2000)
- Watanabe H, Sol. Energy Mater. Sol. Cells, 54(1), 203 (1998)
- Gutowska A, Bae YB, Feijen J, Kim SW, J. Control. Release, 22, 95 (1999)
- Chung J, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T, J. Control. Release, 62, 115 (1999)
- Schmaljohann D, Oswald J, Jorgensen B, Nitschke M, Beyerlein D, Werner C, Biomacromolecules, 4(6), 1733 (2003)
- Yamato M, Akiyama Y, Kobayashi J, Yang J, Kikichi A, Okano T, Prog. Polym. Sci, 32, 1123 (2007)
- Kim D, Lee E, Lee HS, Yoon J, Sci. Rep., 5, 7646 (2015)
- Gerlach G, Guenther M, Sorber J, Suchaneck G, Arndt KF, Richter A, Sens. Actuators B-Chem., 111-112, 555 (2005)
- Lin G, Chang S, Hao H, Tathireddy P, Orthner M, Magda J, Solzbacher F, Sens. Actuators B-Chem., 144, 332 (2010)
- Buenger D, Topuz F, Groll J, Prog. Polym. Sci, 37, 1678 (2012)
- Atkins P, de Paula J, Elements of Physical Chemistry, Oxford Univ. Press, Oxford, 2006.
- Flory PJ, J. Chem. Phys., 10, 51 (1941)
- Flory PJ, J. Chem. Phys., 12, 425 (1944)
- Huggins ML, J. Am. Chem. Soc., 86, 3535 (1964)
- Yashin VV, Balazs AC, J. Chem. Phys., 126, 124707 (2007)
- Cai S, Suo Z, J. Mech. Phys. Solids, 59, 2259 (2011)
- Bastide J, Candau S, Leibler L, Macromolecules, 14, 719 (1980)
- Horkay F, Hecht AM, Mallam S, Geissler E, Rennie AR, Macromolecules, 24, 2896 (1991)
- Moerkerke R, Meeussen F, Koningsveld R, Berghmans H, Mondelaers W, Schacht E, Dusek K, Solc K, Macromolecules, 31(7), 2223 (1998)
- Horkay F, Tasaki I, Basser PJ, Biomaromolecules, 1, 84 (2000)
- Hui CY, Muralidharan V, J. Chem. Phys., 123, 154905 (2005)
- Li H, Luo R, Birgersson E, Lam KY, J. Chem. Phys., 101, 114905 (2007)
- Hong W, Zhao X, Zhou J, Suo Z, J. Mech. Phys. Solids, 56, 1779 (2008)
- Doi M, J. Phys. Soc. Jpn., 78, 052001 (2009)
- An Y, Solis FJ, Jiang H, J. Mech. Phys. Solids, 58, 2083 (2010)
- Marcombe R, Cai S, Hong W, Zhao X, Lapusta Y, Suo Z, Soft Matter, 6, 784 (2010)
- Chester SA, Anand L, J. Mech. Phys. Solids, 58, 1879 (2010)
- Hong W, Zhao X, Suo Z, J. Mech. Phys. Solids, 58, 558 (2010)
- DeGennes PG, Scaling Concepts in Polymer Physics, Cornell University Press, New York, 1979.
- Lee J, Shin K, Polym. Sci. Technol., 24(6), 574 (2013)