화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.6, 1052-1058, November, 2018
미세채널을 이용한 폴리(N-이소프로필아크릴아미드) 마이크로 하이드로젤의 합성 및 농도측정 센서 용도
Synthesis of Poly(N-isopropylacrylamide) Micro-hydrogel Using a Microfluidic Channel and Study on Concentration Sensor
E-mail:
초록
본 연구에서는 소프트리소그래피(soft lithography) 공정을 이용하여 폴리디메틸실록산(polydimethylsiloxane, PDMS) 재질의 미세채널을 제작하였고, 이를 활용하여 구형의 폴리(N-이소프로필아크릴아미드)(poly(N-isopropylacrylamide), PNIPAm) 미세-하이드로젤을 합성하였다. 합성된 미세-하이드로젤은 온도가 상승할수록 부피가 감소하였으며, 32 °C 주변에서 최저임계용액온도(lower critical solution temperature, LCST) 거동을 보였다. 미세-하이드로젤을 폴리비닐알코올(poly(vinyl alcohol), PVA) 용액 또는 염화나트륨(sodium chloride, NaCl) 용액에 담구었을 때, 용액의 농도 및 온도에 따른 미세-하이드로젤의 부피변화를 관찰하였다. 부피변화로부터 미세-하이드로젤에 포함된 물과 고분자의 부피분율 변화를 계산하였다. Flory-Huggins 이론을 도입하여 각 용액의 농도 및 온도에 따른 삼투압 변화를 확인하였다. 측정된 부피변화와 삼투압 변화 결과로부터 제조된 미세-하이드로젤은 온도 및 농도측정 센서로 활용가능함을 확인하였다.
In this study, PDMS microchannels were fabricated by using a soft lithography process. Poly(N-isopropylacrylamide) (PNIPAm) micro-hydrogel spheres were synthesized by using the microfluidic channel. The volume of synthesized micro-hydrogel was reduced as increasing temperature, exhibiting lower critical solution temperature (LCST) behavior at around 32 °C. The volume changes of the micro-hydrogels were monitored as they were immersed into poly(vinyl alcohol) (PVA) or sodium chloride (NaCl) solution. The effects of temperature and solution concentration on the volume of the micro-hydrogels were investigated. The osmotic pressures of the micro-hydrogels were calculated from the solid contents in the micro-hydrogel by using the Flory-Huggins theory. It was suggested that the micro-hydrogel can be used as a sensor detecting concentration of solution and temperature.
  1. Tice JD, Song H, Lyon AD, Ismagilov RF, Langmuir, 19(22), 9127 (2003)
  2. Okushima S, Nisisako T, Torii T, Higuchi T, Langmuir, 20(23), 9905 (2004)
  3. Chu LY, Kim JW, Shah RK, Weitz DA, Adv. Funct. Mater., 17(17), 3499 (2007)
  4. Shah RK, Kim JW, Agresti JJ, Weitz DA, Chu LY, Soft Matter, 4, 2303 (2008)
  5. Sugiura S, Szilagyi A, Sumaru K, Hattori K, Takagi T, Filipcsei G, Zrinyi M, Kanamori T, Lab Chip, 9, 196 (2008)
  6. Chen CH, Shah RK, Abate AR, Weitz DA, Langmuir, 25(8), 4320 (2009)
  7. Huang SQ, Lin BC, Qin JH, Electrophoresis, 32(23), 3364 (2011)
  8. Yoon J, Bian P, Kim J, McCarthy TJ, Hayward RC, Angew. Chem., 124, 7258 (2012)
  9. Hoffman AS, Adv. Drug Deliv. Rev., 64, 18 (2012)
  10. Koetting MC, Peters JT, Steichen SD, Peppas NA, Mater. Sci. Eng. R-Rep., 93, 1 (2015)
  11. Hwang MY, Kim SG, Lee HS, Muller SJ, Soft Matter, 13, 5785 (2017)
  12. Hwang MY, Kim SG, Lee HS, Muller SJ, Soft Matter, 14, 216 (2018)
  13. Tropmann A, Tanguy L, Koltay P, Zengerle R, Riegger L, Langmuir, 28(22), 8292 (2012)
  14. Lamberti A, Marasso SL, Cocuzza M, RSC Adv., 4, 61415 (2014)
  15. Li CF, Hu ZB, Li Y, J. Chem. Phys., 100(6), 4645 (1994)
  16. Yoshida R, Okano T, Biomedical Applications of Hydrogels Handbook, Springer, New York, 2010.
  17. Kim D, Kim D, Lee E, Yoon J, Biomicrofluidics, 10, 014127 (2016)
  18. Qiu Y, Park K, Adv. Drug Deliv. Rev., 53, 321 (2001)
  19. Trujillo V, Kim J, Hayward RC, Soft Matter, 4, 564 (2008)
  20. Kim J, Yoon J, Hayward RC, Nat. Mater., 9(2), 159 (2010)
  21. Jung JH, Kim J, Lee KY, Polym. Korea, 37(4), 478 (2013)
  22. Onal CD, Rus D, Bioinspir. Biomim., 8, 026003 (2013)
  23. Rus D, Tolley MT, Nature, 521(7553), 467 (2015)
  24. Yoon H, Lee J, Polym. Korea, 36(4), 455 (2012)
  25. Kim D, Wang S, Lee HS, Yoon J, Polym. Korea, 39(5), 788 (2015)
  26. Lim D, Lee E, Kim H, Park S, Beak S, Yoon J, Soft Matter, 11, 1606 (2016)
  27. Kim D, Lee HS, Yoon J, Sci. Rep., 6, 20921 (2016)
  28. Hirotsu S, Hirokawa T, Tanaka T, J. Chem. Phys., 87, 1392 (1987)
  29. Afroze F, Nies E, Berghmans H, J. Mol. Struct., 554, 55 (2000)
  30. Juodkazis S, Mukai N, Wakaki R, Yamaguchi A, Matsuo S, Misawa H, Nature, 408, 178 (2000)
  31. Watanabe H, Sol. Energy Mater. Sol. Cells, 54(1), 203 (1998)
  32. Gutowska A, Bae YB, Feijen J, Kim SW, J. Control. Release, 22, 95 (1999)
  33. Chung J, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T, J. Control. Release, 62, 115 (1999)
  34. Schmaljohann D, Oswald J, Jorgensen B, Nitschke M, Beyerlein D, Werner C, Biomacromolecules, 4(6), 1733 (2003)
  35. Yamato M, Akiyama Y, Kobayashi J, Yang J, Kikichi A, Okano T, Prog. Polym. Sci, 32, 1123 (2007)
  36. Kim D, Lee E, Lee HS, Yoon J, Sci. Rep., 5, 7646 (2015)
  37. Gerlach G, Guenther M, Sorber J, Suchaneck G, Arndt KF, Richter A, Sens. Actuators B-Chem., 111-112, 555 (2005)
  38. Lin G, Chang S, Hao H, Tathireddy P, Orthner M, Magda J, Solzbacher F, Sens. Actuators B-Chem., 144, 332 (2010)
  39. Buenger D, Topuz F, Groll J, Prog. Polym. Sci, 37, 1678 (2012)
  40. Atkins P, de Paula J, Elements of Physical Chemistry, Oxford Univ. Press, Oxford, 2006.
  41. Flory PJ, J. Chem. Phys., 10, 51 (1941)
  42. Flory PJ, J. Chem. Phys., 12, 425 (1944)
  43. Huggins ML, J. Am. Chem. Soc., 86, 3535 (1964)
  44. Yashin VV, Balazs AC, J. Chem. Phys., 126, 124707 (2007)
  45. Cai S, Suo Z, J. Mech. Phys. Solids, 59, 2259 (2011)
  46. Bastide J, Candau S, Leibler L, Macromolecules, 14, 719 (1980)
  47. Horkay F, Hecht AM, Mallam S, Geissler E, Rennie AR, Macromolecules, 24, 2896 (1991)
  48. Moerkerke R, Meeussen F, Koningsveld R, Berghmans H, Mondelaers W, Schacht E, Dusek K, Solc K, Macromolecules, 31(7), 2223 (1998)
  49. Horkay F, Tasaki I, Basser PJ, Biomaromolecules, 1, 84 (2000)
  50. Hui CY, Muralidharan V, J. Chem. Phys., 123, 154905 (2005)
  51. Li H, Luo R, Birgersson E, Lam KY, J. Chem. Phys., 101, 114905 (2007)
  52. Hong W, Zhao X, Zhou J, Suo Z, J. Mech. Phys. Solids, 56, 1779 (2008)
  53. Doi M, J. Phys. Soc. Jpn., 78, 052001 (2009)
  54. An Y, Solis FJ, Jiang H, J. Mech. Phys. Solids, 58, 2083 (2010)
  55. Marcombe R, Cai S, Hong W, Zhao X, Lapusta Y, Suo Z, Soft Matter, 6, 784 (2010)
  56. Chester SA, Anand L, J. Mech. Phys. Solids, 58, 1879 (2010)
  57. Hong W, Zhao X, Suo Z, J. Mech. Phys. Solids, 58, 558 (2010)
  58. DeGennes PG, Scaling Concepts in Polymer Physics, Cornell University Press, New York, 1979.
  59. Lee J, Shin K, Polym. Sci. Technol., 24(6), 574 (2013)