화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.6, 910-918, November, 2018
토션엘리먼트가 있는 단축압출기의 균질화 구간에서 고분자 용융액의 혼합 성능 향상에 대한 수치모사
Numerical Simulation on the Enhanced Mixing of Polymer Melt by Single Screw with Torsion Elements in the Homogenizing Section
E-mail:
As one of key factors that determine the quality of products, the homogenization of polymer melt is closely dependent on the mixing of polymers. The mixing of polymer melt in the homogenizing section by a single screw with torsion elements was analyzed with the computational fluid dynamics (CFD) simulation. The simulation results reveal that screws with such torsion elements arranged in a decentralized form have smaller segregation scale, distribution index and higher mixing efficiency, compared with the conventional screw. The decentralized arrangement is more effective for mixing than the centralized distribution. The rotational flow induced by the torsion elements can significantly enhance the mass transfer process and improve mixing and plasticizing. Compared with those in conventional screw, the distributions of temperature and viscosity are more uniform at the outlet of torsion screws, which also made the torsion element generally more effective and efficient for mixing and plasticizing.
  1. Potente H, Tobben WH, Macromol. Mater. Eng., 287, 808 (2002)
  2. Sikora JW, Samujlo B, Polym. Eng. Sci., 54(9), 2037 (2014)
  3. Chen JN, Dai P, Yao H, Chan T, J. Polym. Eng., 31, 53 (2011)
  4. Rauwendaal C, Plast. Add. Compound., 10, 32 (2008)
  5. Lee KY, Polym. Korea, 22(1), 174 (1998)
  6. Jian RR, Yang WM, Cheng LS, Xie PC, Int. J. Heat Mass Transf., 115, 946 (2017)
  7. Taguchi T, Saito H, J. Appl. Polym. Sci., 133, 7 (2016)
  8. Kang MS, Kang BY, Sim HS, Son JM, Lee KH, Park M, Polym. Korea, 35(2), 99 (2011)
  9. Hwang WR, Kang KW, Kwon TH, AIChE J., 50(7), 1372 (2004)
  10. Yao WG, Tanifuji S, Takahashi K, Koyama K, Polym. Eng. Sci., 41(6), 908 (2001)
  11. Li X, Peng J, Chen J, China Plastics, 24, 109 (2010)
  12. Zitzenbacher G, Karlbauer R, Thiel H, Int. Polym. Process., 22(1), 73 (2007)
  13. Kubik P, Vlcek J, Tzoganakis C, Miller L, Polym. Eng. Sci., 52(6), 1232 (2012)
  14. Hu W, Luo X, Yan Z, Polym. Korea, 41(6), 944 (2017)
  15. Feng YH, Qu JP, He HZ, Liu B, Cao XW, Wen SP, J. Appl. Polym. Sci., 108(6), 3917 (2008)
  16. Bouquey M, Loux C, Muller R, Bouchet G, J. Appl. Polym. Sci., 119(1), 482 (2011)
  17. Qu JP, Yang ZT, Yin XC, He HZ, Feng YH, Polym. -Plast. Technol. Eng., 48, 1269 (2009)
  18. Qu JP, Zhao XQ, Li JB, Adv. Mater. Res., 472, 1941 (2012)
  19. Yin XC, Li S, He GJ, Zhang GZ, Qu JP, Adv. Polym. Technol., 35(2), 215 (2016)
  20. Wen JS, Lei SK, Liang YH, Peng XF, Qu JP, J. Macromol. Sci. Part B-Phys., 53, 358 (2014)
  21. Wen JS, Liang YH, Chen ZM, Adv. Mater. Res., 421, 415 (2012)
  22. Yin X, Li S, Wang L, He G, Yang Z, Polym. Korea, 41(2), 163 (2017)
  23. Dhakal P, Das SR, Poudyal H, Chandy AJ, J. Appl. Polym. Sci., 134, 9 (2017)
  24. Vyakaranam KV, Kokini JL, Chem. Eng. Sci., 84, 303 (2012)
  25. Liu TL, Du YX, Polym. -Plast. Technol. Eng., 50, 1231 (2011)
  26. Jian R, Xie P, Yang W, J. Eng. Thermophys., 38, 281 (2017)
  27. Danckwerts PV, Appl. Sci. Res. A, 3, 279 (1952)
  28. Wei J, Chen D, Zhou D, Zhang A, Yang Y, Polym. Korea, 39(3), 441 (2015)
  29. WONG TH, MANASZLOCZOWER I, Int. Polym. Process., 9(1), 3 (1994)
  30. YANG HH, MANASZLOCZOWER I, Int. Polym. Process., 9(4), 291 (1994)
  31. Cheng JJ, Manas-Zloczower I, Int. Polym. Process., 5, 178 (1990)
  32. Ottino JM, Ranz WE, Macosko CW, AIChE J., 27, 565 (1981)
  33. Ottino JM, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, Cambridge, UK, 1989.
  34. Connelly RK, Kokini JL, J. Food Eng., 79(3), 956 (2007)