Journal of Polymer Science Part A: Polymer Chemistry, Vol.36, No.10, 1573-1582, 1998
Aminolysis kinetics of model and polymer-bound anhydride moieties in low- and high-viscosity media
This study examines the legitimacy of using the reaction kinetics of low molecular weight model compounds in solution to predict the chemical kinetics of polymer-bound species in a homogeneous melt. The reaction under study takes place between an aliphatic secondary amine, diisooctadecylamine (DiOA), and a 5-membered anhydride ring, saturated maleic anhydride (MA), forming an amic acid product. The MA species was present as a pendant graft on either a model compound, dodecane-g(maleic anhydride) (dodecane-g-MA), or a polymer chain, linear low-density polyethylene-g-(maleic anhydride) (LLDPE-g-MA). Pseudo-second-order kinetics of the anhydride consumption are followed by infrared spectroscopy, either in situ in dodecane solution or by scanning frozen film samples taken from a linear low-density polyethylene melt. It was found that the LLDPE-g-MA/DiOA system reacted at a slightly slower rate than the dodecane-g-MA/DiOA system in the low-viscosity solution at 140 degrees C. In the melt, the dodecane-g-MA/DiOA system experienced a small decrease in the overall reaction rate compared to the same reaction carried out in dodecane. However, the LLDPE-g-MA/DiOA system underwent a 65% decrease in the observed second-order rate constant on going from a solution to the melt. To explain these phenomena, the effects of diffusion, miscibility, and chain entanglements in the melt are examined here.