화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.64, 344-351, August, 2018
3D yolk.shell Si@void@CNF nanostructured electrodes with improved electrochemical performance for lithium-ion batteries
E-mail:
Si-based anode materials are studied to overcome the limitations of high-capacity lithium ion batteries (LIBs). However, Si-based anodes have critical drawbacks such as volumetric electrode expansion during cycling in LIBs, that result in deterioration in cycling performance. Herein, we prepare 3D yolk.shell Si and carbon nanofiber (CNF) nanostructured electrodes with different void portions (Si@void@CNF-x) using oxidation, etching, and electrospinning process. The portions of the void in the Si@void@CNF electrodes can be controlled by electrospinning with Si powder oxidized at 700 °C under an air atmosphere for a reaction time (x) of 3, 6, and 9 h followed by chemically etching in HF solution. The electrodes are structurally characterized using X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. The charge/discharge and rate performance of the electrodes is evaluated in the coin-type cells. Si@void@CNF-6 shows a highest reversible discharge capacity of 304.9 mAh g-1 at a current density of 200 mA g-1 after 500 cycles and an improved high rate performance (166@2000 mA g-1 after 500 cycles), compared to Si@void@CNF-3 and Si@void@CNF-9. The particular void portion in the Si@void@CNF-6 can be responsible for the superior LIB performance, representing the efficiently volumetric expansion-relieved electrode structure during cycling.
  1. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  2. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM, Nat. Mater., 11(1), 19 (2012)
  3. Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
  4. Armand M, Tarascon JM, Nature, 451, 652 (2008)
  5. Deng Y, Yang C, Zou K, Qin X, Zhao Z, Chen G, Adv. Energy Mater., 7, 160195 (2017)
  6. Hao Q, Ye J, Xu C, J. Alloy. Compd., 727, 34 (2017)
  7. Son IH, Park JH, Park S, Park K, Han S, Shin J, Doo SG, Hwang Y, Chang H, Choi JW, Nat. Commun., 8, 1 (2017)
  8. Cheng Q, Okamoto Y, Tamura N, Tsuji M, Maruyama S, Matsuo Y, Sci. Rep., 7, 1 (2017)
  9. Liu D, Liu Z, Li X, Xie W, Wang Q, Liu Q, Fu Y, He D, Small, 13, 170200 (2017)
  10. Obrovac MN, Christensen L, Le DB, Dahnb JR, J. Electrochem. Soc., 154(9), A849 (2007)
  11. Beaulieu LY, Eberman KW, Turner RL, Krause LJ, Dahn JR, Electrochem. Solid State Lett., 4(9), A137 (2001)
  12. Lee DS, Choi YH, Jeong HD, J. Ind. Eng. Chem., 53, 82 (2017)
  13. Szczech JS, Jin S, Energy Environ. Sci., 4, 56 (2011)
  14. Shin HC, Corno JA, Gole JL, Liu ML, J. Power Sources, 139(1-2), 314 (2005)
  15. Ryu J, Hong D, Lee HW, Park S, Nano Res., 10, 3970 (2017)
  16. Chen S, Shen L, van Aken PA, Maier J, Yu Y, Adv. Mater., 29, 160565 (2017)
  17. Ryu JH, Kim JW, Sung YE, Oh SM, Electrochem. Solid-State Lett., 7, A306 (2004)
  18. Sehlleier YH, Dobrowolny S, Xiao L, Heinzel A, Schulz C, Wiggers H, J. Ind. Eng. Chem., 52, 305 (2017)
  19. Chen Y, Xu M, Zhang Y, Pan Y, Lucht BL, Bose A, ACS Appl. Mater. Interfaces, 7, 21391 (2015)
  20. Sun W, Wan L, Li X, Zhao X, Yan X, J. Mater. Chem. A, 4, 110948 (2016)
  21. Jin Y, Zhu B, Lu Z, Liu N, Zhu J, Adv. Energy Mater., 7, 170071 (2017)
  22. Ma W, Liu X, Wang X, Wang Z, Zhang R, Yuan X, Ding Y, J. Mater. Chem. A, 4, 19140 (2016)
  23. Wu H, Cui Y, Nano Today, 7(5), 414 (2012)
  24. Cui LF, Ruffo R, Chan CK, Peng H, Cui Y, Nano Lett., 9, 491 (2009)
  25. Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y, Nat. Nanotechnol., 3(1), 31 (2008)
  26. Yao Y, McDowell MT, Ryu I, Wu H, Liu N, Hu L, Nix WD, Cui Y, Nano Lett., 11, 2949 (2011)
  27. Ge M, Rong J, Fang X, Zhou C, Nano Lett., 12, 2318 (2012)
  28. Zong L, Jin Y, Liu C, Zhu B, Hu X, Lu Z, Zhu J, Nano Lett., 16, 7210 (2016)
  29. Chen S, Chen Z, Luo Y, Xia M, Cao C, Nanotechnology, 28, 165404 (2017)
  30. Park MH, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J, Nano Lett., 9, 3844 (2009)
  31. Zhang S, NPJ Comput. Mater., 7, 1 (2017)
  32. Park CM, Kim JH, Kim H, Sohn HJ, Chem. Soc. Rev., 39, 3115 (2010)
  33. Guo J, Chen X, Wang C, J. Mater. Chem., 20, 5035 (2010)
  34. Wang YX, Wen XF, Chen J, Wang SN, J. Power Sources, 281, 285 (2015)
  35. Yi R, Dai F, Gordin ML, Chen S, Wang D, Adv. Energy Mater., 3, 295 (2013)
  36. Lu Z, Liu N, Lee HW, Zhao J, Li W, Li Y, Cui Y, ACS Nano, 9, 2540 (2015)
  37. Liu N, Lu ZD, Zhao J, McDowell MT, Lee HW, Zhao WT, Cui Y, Nat. Nanotechnol., 9(3), 187 (2014)
  38. Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y, Nano Lett., 12, 3315 (2012)
  39. Xu ZL, Gang Y, Garakani MA, Abouali S, Huang JQ, Kim JK, J. Mater. Chem. A, 4, 6098 (2016)
  40. Yang LY, Li HZ, Liu J, Sun ZQ, Tang SS, Lei M, Sci. Rep., 5, 10908 (2015)
  41. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y, Nat. Nanotechnol., 7, 310 (2012)
  42. Deal BE, Grove AS, J. Appl. Phys., 36, 3770 (1965)
  43. Madani MR, Ajmera PK, Electron. Lett., 24, 856 (1988)
  44. Tran C, Kalra V, J. Power Sources, 235, 289 (2013)
  45. Kim BH, Yang KS, Woo HG, Oshida K, Synth. Met., 161, 1211 (2011)
  46. Perananthan S, Bonso JS, Ferraris JP, Carbon, 106, 20 (2016)
  47. Xu ZL, Yao S, Cui J, Zhou L, Kim JK, Energy Storage Mater., 8, 10 (2017)
  48. Asmaly HA, Abussaud B, Ihsanullah, Saleh TA, Gupta VK, Atieh MA, J. Saudi Chem. Soc., 19, 511 (2015)
  49. Park SH, Lee WJ, Sci. Rep., 5, 09754 (2015)
  50. Chen Y, Lu Z, Zhou L, Mai YW, Huang H, Energy Environ. Sci., 5, 7898 (2012)
  51. Kim SJ, Kim MC, Han SB, Lee GH, Choe HS, Kwak DH, Choi SY, Son BG, Shin MS, Park KW, Nano Energy, 27, 545 (2016)
  52. Liu J, Kopold P, van Aken PA, Maier J, Yu Y, Angew. Chem.-Int. Edit., 54, 9632 (2015)
  53. de Guzman RC, Yang J, Cheng MMC, Salley SO, Ng KYS, J. Mater. Chem. A, 2, 14577 (2014)
  54. Liu X, Zhang J, Si W, Xi L, Eichler B, Yan C, Schmidt OG, ACS Nano, 9, 1198 (2015)
  55. Chan CK, Ruffo R, Hong SS, Huggins RA, Cui Y, J. Power Sources, 189(1), 34 (2009)