Macromolecular Research, Vol.26, No.6, 529-538, June, 2018
Comparison of Hydrogenated Bisphenol A and Bisphenol A Epoxies: Curing Behavior, Thermal and Mechanical Properties, Shape Memory Properties
E-mail:,
Hydrogenated bisphenol A epoxy resin was cured using different kind of curing agents, resulting in epoxy networks with better shape memory properties than bisphenol A epoxy networks. The non-isothermal curing kinetics investigated by differential scanning calorimetry (DSC) demonstrated that hydrogenated bisphenol A epoxy showed lower curing reactivity than bisphenol A epoxy, while it still could be cured well. The thermal and mechanical properties as well as shape memory properties were studied by dynamic mechanical analysis (DMA), DSC, thermogravimetric analysis (TGA), three-point bending test and U-type shape memory test and cyclic stretch test using DMA. Results manifested that hydrogenated bisphenol A epoxy systems exhibited lower shape transition temperature (lower T g ), slightly higher modulus, better toughness, much faster shape recovery rate, and better elongating ability at temperature above T g than bisphenol A epoxy systems, which was due to the rigidity of cyclohexane ring from its steric hindrance and favorable segmental mobility when absorbing external energy such as heating or bending. Moreover, the shape fixity and shape recovery ratio of all the samples were as high as 96.3~98.5% and 100% and their cycling stability during shape memory test was excellent. Although lower than bisphenol A epoxy networks, hydrogenated bisphenol A epoxy networks possessed high thermal stability with initial degradation temperature (Td5%) of >305 °C.
Keywords:epoxy resins;thermosets;non-planar cyclic structure;shape memory effects;structure-property relationships
- Zhao Q, Qi HJ, Xie T, Prog. Polym. Sci, 49-50, 79 (2015)
- Hager MD, Bode S, Weber C, Schubert US, Prog. Polym. Sci, 49-50, 3 (2015)
- Zhao Q, Zou W, Luo Y, Xie T, Sci. Adv., 2, 11421 (2016)
- Pei ZQ, Yang Y, Chen QM, Wei Y, Ji Y, Adv. Mater., 28(1), 156 (2016)
- Yang Y, Pei ZQ, Li Z, Wei Y, Ji Y, J. Am. Chem. Soc., 138(7), 2118 (2016)
- Lawton MI, Tillman KR, Mohammed HS, Kuang W, Shipp DA, Mather PT, ACS Macro Lett., 5, 203 (2016)
- Kohlmeyer RR, Buskohl PR, Deneault JR, Durstock MF, Vaia RA, Chen J, Adv. Mater., 26(48), 8114 (2014)
- Zhang D, Zhang Q, Lu Y, Jiang J, Yao Y, Li S, Liu GL, Liu Q, Nanomedicine, 12, 449 (2016)
- Zheng Y, Dong R, Shen J, Guo S, ACS. Appl. Mater., 8, 1371 (2016)
- Chien YC, Chuang WT, Jeng US, Hsu SH, ACS. Appl. Mater., 9, 5419 (2017)
- Zheng N, Fang Z, Zou W, Zhao Q, Xie T, Angew. Chem.-Int. Edit., 55, 11421 (2016)
- Arnebold A, Hartwig A, Polymer, 83, 40 (2016)
- Li C, Dai JY, Liu XQ, Jiang YH, Ma SQ, Zhu J, Macromol. Chem. Phys., 217, 1439 (2017)
- Ma ZY, Wang Y, Zhu J, Yu JR, Hu ZM, J. Polym. Sci. A: Polym. Chem., 55(10), 1790 (2017)
- Zhang G, Zhao Q, Yang L, Zou W, Xi X, Xie T, ACS Macro Lett., 5, 805 (2016)
- Detwiler AT, Lesser AJ, J. Mater. Sci., 47(8), 3493 (2012)
- Psarras GC, Parthenios J, Galiotis C, J. Mater. Sci., 36(3), 535 (2001)
- Xie T, Rousseau IA, Polymer, 50(8), 1852 (2009)
- Liang C, Rogers CA, Malafeew E, J. Intell. Mater. Syst. Struct., 8, 380 (1997)
- Sun H, Liu Y, Tan H, Du X, J. Appl. Polym. Sci., 131, 39882 (2014)
- Wang Z, Song W, Ke L, Wang Y, Mater. Lett., 89, 216 (2012)
- Fan M, Liu J, Li X, Zhang J, Cheng J, J. Polym. Res., 21, 376 (2014)
- Zheng N, Fang G, Cao Z, Zhao Q, Xie T, Polym. Chem., 6, 3046 (2015)
- Meng H, Li GQ, Polymer, 54(9), 2199 (2013)
- Flint S, Markle T, Thompson S, Wallace E, J. Environ. Manage., 104, 19 (2012)
- Ma SQ, Webster DC, Jabeen F, Macromolecules, 49(10), 3780 (2016)
- Chen LP, Yee AF, Goetz JM, Schaefer J, Macromolecules, 31(16), 5371 (1998)
- Chen LP, Yee AF, Moskala EJ, Macromolecules, 32(18), 5944 (1999)
- Li XY, Yee AF, Macromolecules, 37(19), 7231 (2004)
- Liu JW, Yee AF, Macromolecules, 31(22), 7865 (1998)
- Karger-Kocsis J, Gryshchuk O, Jost N, J. Appl. Polym. Sci., 88(8), 2124 (2003)
- Wei K, Zhu G, Tang Y, Liu T, Xie J, J. Mater. Res., 28, 2903 (2013)
- Wei K, Zhu G, Tang Y, Niu L, J. Polym. Res., 20, 1 (2013)
- Wei K, Zhu G, Tang Y, Tian G, Xie J, Smart Mater. Struct., 21, 055022 (2012)
- Ma B, Zhou X, Wei K, Bo Y, You Z, Appl. Sci., 7, 523 (2017)
- Li TT, Liu XQ, Jiang YH, Ma SQ, Zhu J, Iran. Polym. J., 25, 957 (2016)
- Rosu D, Cascaval CN, Mustata F, Ciobanu C, Thermochim. Acta, 383(1-2), 119 (2002)
- Cai HY, Li P, Sui G, Yu YH, Li G, Yang XP, Ryu S, Thermochim. Acta, 473(1-2), 101 (2008)
- Wang CS, Lin CH, J. Appl. Polym. Sci., 74(7), 1635 (1999)
- Wang Q, Shi W, Polym. Degrad. Stabil., 91, 1747 (2006)
- Tobushi KOH, Hashimoto T, Mech. Mater., 33, 545 (2001)
- Liu Y, Gall K, Dunn ML, Greenberg AR, Diani J, Int. J. Plast., 22, 279 (2006)
- Abrahamson ER, Lake MS, Munshi NA, Gall K, J. Intell. Mater. Syst. Struct., 14, 623 (2003)
- Ma SQ, Webster DC, Macromolecules, 48(19), 7127 (2015)
- Chiu YC, Chou IC, Tseng WC, Ma CCM, Polym. Degrad. Stabil., 93, 668 (2008)
- Ma S, Liu W, Hu C, Wang Z, Tang C, Macromol. Res., 18(4), 392 (2010)
- Liu WQ, Ma SQ, Wang ZF, Hu CH, Tang CY, Macromol. Res., 18(9), 853 (2010)