Applied Surface Science, Vol.427, 779-786, 2018
Facile fabrication of graphene-based aerogel with rare earth metal oxide for water purification
We report a one-step facile fabrication of macroscopic multifunctional graphene-based aerogel with three-dimensional interconnected networks under the synergistic effects of the reduction of graphene oxide sheets by L-ascorbic acid and in situ simultaneous deposition of nanoparticles on graphene sheets. The functional components, Nd2O3 nanoparticles, can be easily incorporated with graphene sheets to assemble bulk macroscopic graphene materials under mild conditions. The reduced graphene oxide/neodymium oxide (rGO/Nd2O3) aerogel showed remarkable adsorption capacity towards different types of dyes, especially for anionic dyes, with the adsorption capacity for indigo disulphonate (ID) being more than 220 mg g(-1) within one hour while the adsorption capacity at equilibrium is as high as 397 mg g(-1). The method proposed is proven to be universal to induce macroscopic assembly of reduced graphene sheets with rare earth metal oxides and thus facilitates to accessing various graphene-based multifunctional nanocomposites in the form of macroscopic aerogels. (C) 2017 Published by Elsevier B.V.