Journal of Industrial and Engineering Chemistry, Vol.58, 328-333, February, 2018
Band structure of amorphous zinc tin oxide thin films deposited by atomic layer deposition
E-mail:
Recently, zinc tin oxide (ZTO) has attracted attention as an alternative buffer layer to replace CdS for photovoltaic cells. ZTO thin films were grown by atomic layer deposition from diethylzinc, tetrakis(dimethylamido)tin, and water. Compositional, structural and optical properties were characterized to construct band diagram of the ZTO films depending on Sn content. The ZTO films exhibit optical bandgaps of 2.95-3.07 eV which are wider than that of CdS. Furthermore, their work function is also observed to vary in a wide range of 4.32-5.16 eV. It is attributed to incorporation of Sn into ZTO which strongly influences formation of oxygen vacancies.
- Jackson P, Wuerz R, Hariskos D, Lotter E, Witte W, Powalla M, Phys. Status Solidi - Rapid Res. Lett., 10(8), 583 (2016)
- Caballero R, et al., J. Phys. Condens. Matter, 19, 356222 (2007)
- Qiu SN, Lam WW, Qiu CX, Shih I, Appl. Surf. Sci., 113/114, 764 (1997)
- Arnou P, Cooper CS, Ulicna S, Abbas A, Eeles A, Wright LD, Malkov AV, Walls JM, Bowers JW, Thin Solid Films, 633, 76 (2017)
- Naghavi N, et al., Prog. Photovolt. Res. Appl., 18, 411 (2010)
- Hultqvist A, Platzer-Bjorkman C, Zimmermann U, Edoff M, Torndahl T, Prog. Photovolt. Res. Appl., 20, 883 (2012)
- Lindahl J, Watjen JT, Hultqvist A, Ericson T, Edoff M, Torndahl T, Prog. Photovolt. Res. Appl., 21, 1588 (2013)
- Naghavi N, Spiering S, Powalla M, Canava B, Taisne A, Guillemoles JF, Taunier S, Etcheberry A, Lincot D, Mater. Res. Soc. Symp. Proc., 763, B9.9.1 (2003)
- Kapilashrami M, et al., Phys. Chem. Chem. Phys., 14, 10154 (2012)
- Jeong S, Ha YG, Moon J, Facchetti A, Marks TJ, Adv. Mater., 22(12), 1346 (2010)
- Lee HY, An CJ, Piao SJ, Ahn DY, Kim MT, Min YS, J. Phys. Chem., 114(43), 18601 (2010)
- Elam JW, Baker DA, Hryn AJ, Martinson ABF, Pellin MJ, Hupp JT, J. Vac. Sci. Technol. A, 26(2), 244 (2008)
- Mullings MN, Hagglund C, Tanskanen JT, Yee Y, Geyer S, Bent SF, Thin Solid Films, 556, 186 (2014)
- Tanskanen JT, Hagglund C, Bent SF, Chem. Mater., 26, 2795 (2014)
- Mackus AJM, Macisaac C, Kim WH, Bent SF, J. Chem. Phys., 146, 52802 (2017)
- Heo J, Kim SB, Gordon RG, Appl. Phys. Lett., 101(11) (2012)
- Min YS, An CJ, Kim SK, Song J, Hwang CS, Bull. Korean Chem. Soc., 31(9), 2503 (2010)
- Ahn BD, Choi DW, Choi C, Park JS, Appl. Phys. Lett., 105, 92103 (2014)
- Liu LC, Chen JS, Jeng JS, Chen WY, ECS J. Solid State Sci. Technol., 2(4), Q59 (2013)
- Kittel C, Introduction to Solid State Physics, Sixth ed., Wiley, New York, 1986.
- Luo YR, Comprehensive Handbook of Chemical Bond Energies, CRC Press, 2007.
- Tauc J, Mater. Res. Bull., 3(1), 37 (1968)
- Tauc J, Grigorovici R, Vancu A, Phys. Status Solidi, 15(2), 627 (1966)
- Mullings MN, Hagglund C, Bent SF, J. Vac. Sci. Technol. A, 31(6), 61503 (2013)
- Robertson J, Phys. Status Solidi Basic Res., 245(6), 1026 (2008)
- Lorenzoni M, Giugni A, Torre B, Nanoscale Res. Lett., 8(1), 1 (2013)
- Quemener V, et al., J. Phys. D-Appl. Phys., 45, 315101 (2012)
- Rachut K, Korber C, Brotz J, Klein A, Phys. Status Solidi, 8(9) (2014)
- Chandra RD, et al., ACS Appl. Mater. Interfaces, 6(2), 773 (2014)
- Choi DW, Maeng WJ, Park JS, Appl. Surf. Sci., 313, 585 (2014)
- Pierret RF, Semiconductor Device Fundamentals, Addison-Wesley, 1996.