화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.1, 53-60, January, 2018
Permeation and modeling studies on Ge(IV) facilitated transport using trioctylamine through supported liquid membrane
E-mail:
Germanium transport from a solution containing tartaric acid by a flat sheet supported liquid membrane (FSSLM) using trioctylamine (TOA) as a carrier and polytetrafluoroethylene (PTFE) as a membrane was investigated. A mass transfer model was developed to monitor the transport process based on experimental results. The effect of parameters such as feed solution pH, TOA concentration, initial germanium concentration, and strip hydrochloric acid concentration on the germanium flux and the transport percentage were studied. A high permeation was observed at a feed solution pH of 3.00, 40%v/v TOA and 5mg/dm3 Ge4+. At HCl concentrations of 1-3mol/dm3, the germanium transport was complete. Finally, based on the mass transfer model, the aqueous and organic resistance values were 11,802 and 860.85 h/cm, respectively. The validity of the model was investigated by fitting the model and experimental data. The correlation coefficient of 0.99 showed the validity of the model.
  1. Jorgenson JD, U.S. Department of the Interior, U.S. Geological Survey, U.S. (2000).
  2. Depuydt B, De Jonghe M, De Baets W, Romandic I, Theuwis A, Quaeyhaegens C, Deguet C, Akatsu T, Letertre F, Oxford, pp. 11-I (2007).
  3. Nusen S, Zhu Z, Chairuangsri T, Cheng CY, Hydrometallurgy, 151, 122 (2015)
  4. Arroyo F, Fernandez-Pereira C, Ind. Eng. Chem. Res., 47(9), 3186 (2008)
  5. Harbuck DD, Judd JC, Behunin DV, Solvent Extr. Ion Exch., 9, 383 (1991)
  6. Boateng DA, Neudorf DA, Saleh VN, Google Patents (1990).
  7. De Schepper A, Coussement M, Van Peteghem A, Google Patents (1984).
  8. epouse Bauer DR, Cote G, Fossi P, Marchon B, Google Patents (1983).
  9. de Schepper A, Hydrometallurgy, 1, 291 (1976)
  10. Werner A, Mosch M, Haseneder R, Repke JU, Chemie Ingenieur Technik, 87, 1826 (2015)
  11. Kuroiwa K, Ohura S, Morisada S, Ohto K, Kawakita H, Matsuo Y, Fukuda D, Miner. Eng., 55, 181 (2014)
  12. Takemura H, Morisada S, Ohto K, Kawakita H, Matsuo Y, Fukuda D, J. Chem. Technol. Biotechnol., 88, 1648 (2013)
  13. Ozawa I, Saito K, Sugita K, Sato K, Akiba M, Sugo T, J. Chromatogr. A, 888, 43 (2000)
  14. Prakorn R, Weerawat P, Ura P, Korean J. Chem. Eng., 23(1), 85 (2006)
  15. Weerawat P, Nattaphol V, Ura P, Korean J. Chem. Eng., 20(6), 1092 (2003)
  16. Leepipatpiboon N, Pancharoen U, Ramakul P, Korean J. Chem. Eng., 30(1), 194 (2013)
  17. Prapasawat T, Ramakul P, Satayaprasert C, Pancharoen U, Lothongkum AW, Korean J. Chem. Eng., 25(1), 158 (2008)
  18. Yi MH, Nam SJ, Chung ST, Korean J. Chem. Eng., 14(4), 263 (1997)
  19. Soylak M, Yigit S, J. Ind. Eng. Chem., 24, 322 (2015)
  20. Gutknecht W, Schuegerl K, Procs. ISEC'88, Moscow, 68 (1988).
  21. Andrianov AM, Avlasovich LM, Khim ZN, Zhurnal Neorganicheskoi Khimii, 12, 2250 (1967)
  22. Andrianov A, Avlasovich L, ZHUR PRIKLAD KHIM, 41, 2313 (1968)
  23. Xiong J, Liang J, Fan L, Xu K, Huang Y, Energy Procedia, 17, 1965 (2012)
  24. Liu F, Yang YZ, Lu YM, Shang K, Lu WJ, Zhao XD, Ind. Eng. Chem. Res., 49(20), 10005 (2010)
  25. Merckmillipore, Merckmillipore, Germany (2017).
  26. Chaudry AA, Bukhari N, Mazhar M, Tazeen F, Sep. Purif. Technol., 54(2), 227 (2007)
  27. Swain B, Jeong J, Lee JC, Lee GH, J. Membr. Sci., 297(1-2), 253 (2007)
  28. Marchese J, Valenzuela F, Basualto C, Acosta A, Hydrometallurgy, 72, 309 (2004)
  29. Venkateswaran P, Palanivelu K, Hydrometallurgy, 78, 107 (2005)
  30. Everest DA, Harrison JC, J. Chem. Soc. (Resumed), 3752 (1960).
  31. Janjam SVSB, Peddeti S, Roy D, Babu SV, Electrochem. Solid State Lett., 11(12), H327 (2008)
  32. Kul M, Topkaya Y, Hydrometallurgy, 92, 87 (2008)
  33. Luke CL, Analytica Chimica Acta, 41, 237 (1968)
  34. Kemperman AJ, Bargeman D, Vandenboomgaard T, Strathmann H, Sep. Sci. Technol., 31(20), 2733 (1996)
  35. Molinari R, De Bartolo L, Drioli E, J. Membr. Sci., 73, 203 (1992)