화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.35, No.1, 44-52, January, 2018
Prediction of CO2 mass transfer parameters to light oil in presence of surfactants and silica nanoparticles synthesized in cationic reverse micellar system
E-mail:
CO2 miscible injection method combined with surfactants and silica nanoparticles was studied to investigate the effect of these additives on CO2 mass transfer parameters to the light oil, including diffusion coefficient, mass transfer coefficient and solubility. Silica nanoparticles with controlled size distribution were synthesized in isooctane/1- hexanol/CTAB/ammonium hydroxide, a highly-stable reverse micellar system with wo=5. The presence of Si-O-Si and Si-O-H bonds in FTIR spectra of the system revealed that silica nanoparticles are formed by partial hydrolysis of TEOS. Results of DLS indicated that the average size and size distribution of the synthesized nanoparticles were 27.6 nm and 13-76 nm, respectively. Diffusion tests were carried out using CO2 gas and three liquid systems: isooctane/ 1-hexanol, isooctane/1-hexanol/CTAB reverse micellar system without nanoparticles, and isooctane/1-hexanol/CTAB reverse micellar system with nanoparticles. Results of modeling and optimization of the gas-liquid systems under nonequilibrium interface condition, using pressure decay data show that the presence of surfactants and nanoparticles leads to decreased gas diffusion coefficient; while increased interface mass transfer resistance due to presence of aqueous droplets and nanoparticles as well as lower solubility of CO2 in the light oil are the results of applying these additives, which limits their application. The obtained CO2 diffusion coefficients for isooctane/1-hexanol, reverse micellar system without nanoparticles, and reverse micellar system with nanoparticles are 8.5550×10 -8, 8.2216×10 -8, and 8.1114×10 -8 m2/s, respectively.
  1. kong X, Ohadi MM, Abu-Dhabi International Petroleum Exhibition and Conference, Abu-Dhabi, UAE (2010).
  2. Kapusta S, Balzano L, Riele P, International Petloleum Technology Conference, Bangkok, Thailand (2012).
  3. Fletcher AJP, Davis JP, The SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, U.S.A. (2010).
  4. Sen R, Prog. Energy Combust. Sci., 34(6), 714 (2008)
  5. Hirasaki GJ, Miller CA, Puerto M, SPE J., 16, 889 (2011)
  6. Kokal S, Al-Kaabi A, World Petroleum Council: Official Publication, 64 (2010).
  7. Olivier JGJ, Janssens-Maenhout G, Muntean M, Peters JAHW, Netherlands (2013).
  8. Roustaei A, Moghadasi J, Bagherzadeh H, Shahrabadi A, SPE International Oilfield Nanotechnology Conference, Noordwijk, The Netherlands (2012).
  9. Hendraningrat L, Shidong L, Torsater O, Torsater S, Moscow, Russia (2012).
  10. Le NYT, Pham DK, Le KH, Nguyen PT, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2(3), 035013 (2011)
  11. Maghzi A, Mohammadi S, Ghazanfari MH, Kharrat R, Masihi M, Exp. Therm Fluid Sci., 40, 168 (2012)
  12. Maghzi A, Mohebbi A, Kharrat R, Ghazanfari MH, Transp. Porous Media, 87(3), 653 (2011)
  13. Karimi A, Fakhroueian Z, Bahramian A, Khiabani NP, Darabad JB, Azin R, Arya S, Energy Fuels, 26(2), 1028 (2012)
  14. Ju B, Fan T, Li Z, J. Pet. Sci. Eng., 86-87, 206 (2012)
  15. Shah RD, SPE annual technical conference and exhibition (2009).
  16. Zhang T, Davidson A, Bryant SL, Huh C, Tulsa, Oklahoma, U.S.A. (2010).
  17. Qiu F, Mamora D, Calgary, Alberta, Canada (2010).
  18. Qiu F, Calgary, Alberta, Canada (2010).
  19. Malhotra V, Thesis, University of Waterloo (2009).
  20. Solanki JN, Murthy ZVP, Ind. Eng. Chem. Res., 50(22), 12311 (2011)
  21. Eastoe J, Hollamby MJ, Hudson L, Adv. Colloid Interface Sci., 128-130, 5 (2006)
  22. Guo P, Wang ZH, Shen PP, Du JF, Ind. Eng. Chem. Res., 48(19), 9023 (2009)
  23. Sheikha H, Pooladi-Darvish M, Mehrotra AK, Energy Fuels, 19(5), 2041 (2005)
  24. Zhang YP, Hyndman CL, Maini BB, J. Pet. Sci. Eng., 25(1-2), 37 (2000)
  25. Riazi MR, J. Pet. Sci. Eng., 14(3-4), 235 (1996)
  26. Yang CD, Gu YA, Ind. Eng. Chem. Res., 44(12), 4474 (2005)
  27. Etminan SR, Pooladi-Darvish M, Maini BB, Chen ZX, Fuel, 105, 672 (2013)
  28. Rasmussen ML, Civan F, AIChE J., 55, 1 (2009)
  29. Trevisan OV, Araujo SV, Santos RGD, Vargas JA, Offshore Technology Conference (2013).
  30. Civan F, Rasmussen ML, SPE J., 6(2), 171 (2001)
  31. Civan F, Rasmussen ML, SPE/DOE Improved Oil Recovery Symposium, Tulsa, Oklahoma (2002).
  32. Civan F, Rasmussen ML, SPE J., 11(1), 71 (2006)
  33. Haghtalab A, Osfouri S, Sep. Sci. Technol., 38(3), 553 (2003)
  34. Yao L, Xu G, Dou W, Bai Y, Colloids Surf. A: Physicochem. Eng. Asp., 316, 8 (2008)
  35. Arriagada FJ, Osseo-Asare K, Colloids Surface, 69, 105 (1992)
  36. Azin R, Mahmoudy M, Raad SMJ, Osfouri S, Central European J. Eng., 3, 585 (2013)
  37. Stehfest H, Communication of the ACM, 13(1), 47 (1970)
  38. Lv D, Wen W, Huang X, Bai J, Mi J, Wu S, Yang Y, J. Mater. Chem., 21, 9506 (2011)
  39. Arriagada FJ, Osseoasare K, J. Colloid Interface Sci., 170(1), 8 (1995)
  40. Gholami Y, Azin R, Fatehi R, Osfouri S, Bahadori A, J. Mol. Liq., 201, 23 (2015)
  41. Gholami Y, Azin R, Fatehi R, Osfouri S, J. Mol. Liq., 202, 31 (2015)
  42. Drummond SE, PhD Thesis, Pennsylvania State University (1981).
  43. Linek V, Benes P, Chem. Eng. Sci., 31(11), 1037 (1976)
  44. Junker BH, Hatton TA, Wang DI, Biotechnol. Bioeng., 35(6), 578 (1990)
  45. Yoshida F, Yamane T, Miyamoto Y, Ind. Eng. Chem. Process Des. Dev., 9(4), 570 (1970)
  46. McMillan JD, Wang DIC, Ann. N. Y. Acad. Sci., 506(1), 569 (1987)
  47. Mimura A, Kawano T, Kodaira R, J. Ferment. Technol., 47, 229 (1969)
  48. Zhang JF, Pan ZJ, Liu KY, Burke N, Energy Fuels, 27(5), 2741 (2013)