화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.6, 638-644, December, 2017
고출력 전기이중층 캐패시터를 위한 핏치계 활성탄소섬유의 함산소불소화 처리
Oxyfluorination of Pitch-based Activated Carbon Fibers for High Power Electric Double Layer Capacitor
E-mail:
초록
전기이중층 커패시터(electric double layer capacitor, EDLC) 전극용 핏치계 활성탄소섬유의 고출력 특성을 향상시키기 위하여 불소와 산소 혼합가스의 다양한 불소분압에 따라 함산소불소화 표면처리를 수행하였다. 함산소불소화 처리된 핏치계 활성탄소섬유는 불소 부분압이 증가함에 따라 선형적인 불소관능기의 증가를 보였고, 산소관능기는 증가하였으나 부분압에 따라 차이가 없었다. 또한 함산소불소화를 통하여 활성탄소섬유 표면의 식각 반응으로 인하여 비표면적 및 기공부피는 감소하였으나 중간기공 부피는 약 4.5배 증가하였다. 50%의 불소가스 분압으로 처리한 활성탄소섬 유의 경우 5와 50 mV/s의 전압주입속도에서 비정전용량이 약 29%와 61%로 증가함을 확인하였다. 이러한 비정전용량의 향상은 함산소불소화 처리를 통한 활성탄소섬유 표면의 산소 및 불소 관능기의 도입과 중간기공의 증가에 의한 효과로 사료된다.
Pitch based activated carbon fibers for electric double layer capacitor (EDLC) electrodes were treated by oxyfluorination via varying the ratio of fluorine and oxygen gases to improve high power property. As the partial pressure of fluorine increased, the oxyfluorinated activated carbon fibers showed an increase of linear fluorine functional groups. While the oxygen functional groups increased, no changes was observed with respect to the partial gas pressure. The specific surface area and pore volume decreased due to the etching reaction on the activated carbon fiber surface through oxyfluorination, but the mesopore volume increased about 4.5 times. In the case of activated carbon fibers treated with 50% of the fluorine gas partial pressure, the specific capacitance increased to about 29% and 61% at scan rates of 5 and 50 mV/s, respectively. The improvement of the specific capacitance was believed to be due to the introduction of oxygen and fluorine functional groups on the activated carbon fiber surface and the increase of mesopores through oxyfluorination.
  1. Ji H, Zhao X, Qiao Z, Jung J, Zhu Y, Lu Y, Zhang LL, MacDonald AH, Ruoff RS, Nat. Commun., 5, 3317 (2014)
  2. Torad NL, Salunkhe RR, Li Y, Hamoudi H, Imura M, Sakka Y, Hu CC, Yamauchi Y, Chem. Eur. J., 20, 7895 (2014)
  3. Bhattacharjya D, Yu JS, J. Power Sources, 262, 224 (2014)
  4. Wei L, Yushin G, Carbon, 49, 4830 (2011)
  5. Li QQ, Liu F, Zhang L, Nelson BJ, Zhang SH, Ma C, Tao XY, Cheng JP, Zhang XB, J. Power Sources, 207, 199 (2012)
  6. Jung MJ, Jeong E, Cho S, Yeo SY, Lee YS, J. Colloid Interface Sci., 381, 152 (2012)
  7. Lim JW, Jeong E, Jung MJ, Lee SI, Lee YS, Appl. Chem. Eng., 22(4), 405 (2011)
  8. Lei C, Amini N, Markoulidis F, Wilson P, Tennison S, Lekakou C, J. Mater. Chem., 1, 6037 (2013)
  9. Gupta V, Miura N, Electrochim. Acta, 52(4), 1721 (2006)
  10. Thomas ER, Hulicova-Jurcakova D, Zhu Z, Lu GQ, Electrochem. Commun., 10, 1594 (2008)
  11. Lee E, Kwon SH, Choi P, Jung JC, Kim MS, Korean J. Mater. Res., 24(6), 285 (2014)
  12. Wu JG, Hong IP, Park SM, Lee SY, Kim MS, Carbon Lett., 9, 137 (2008)
  13. Jung MJ, Yu HR, Lee D, Lee YS, Appl. Chem. Eng., 24(2), 201 (2013)
  14. Lee YS, Lee BK, Carbon, 40, 2461 (2002)
  15. Jung MJ, Jeong E, Kim S, Lee SI, Yoo JS, Lee YS, J. Fluor. Chem., 132, 1127 (2011)
  16. Kim MJ, Jung MJ, Choi SS, Lee YS, Appl. Chem. Eng., 26(4), 432 (2015)
  17. Hesse R, Streubel P, Szargan R, Surf. Interface Anal., 39, 381 (2007)
  18. Popov C, Plass MF, Bergmaier A, Kulisch W, Appl. Phys. A-Mater. Sci. Process., 69, 241 (1999)
  19. Tressaud A, Durand E, Labrugere C, J. Fluor. Chem., 125, 1639 (2004)
  20. Mathur RB, Gupta V, Bahl OP, Tressaud A, Flandrois S, Synth. Met., 114, 197 (2000)
  21. Lee YS, Lee BK, Carbon, 40, 2461 (2002)
  22. Jung MJ, Lim JW, Park IJ, Lee YS, Appl. Chem. Eng., 21(3), 317 (2010)
  23. Bismarck A, Tahhan R, Springer J, Schulz A, Klapotke TM, Zell H, Michaeli W, J. Fluor. Chem., 84, 127 (1997)
  24. Milczarek G, Ciszewski A, Stepniak I, J. Power Sources, 196(18), 7882 (2011)
  25. Xu B, Wu F, Chen RJ, Cao GP, Chen S, Yang YS, J. Power Sources, 195(7), 2118 (2010)
  26. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity (2nd ed.), Academy Press, London, UK (1982).
  27. Laszlo K, Colloids Surf. A: Physicochem. Eng. Asp., 265, 32 (2005)
  28. Jeong E, Jung MJ, Lee YS, J. Fluor. Chem., 150, 98 (2013)
  29. Jung MJ, Jeong E, Lee YS, Appl. Surf. Sci., 347, 250 (2015)
  30. Yang KL, Yiacoumi S, Tsouris C, J. Electroanal. Chem., 540, 159 (2003)
  31. Lee YH, Chang KH, Hu CC, J. Power Sources, 227, 300 (2013)
  32. Rarnani M, Haran BS, White RE, Popov BN, J. Electrochem. Soc., 148(4), A374 (2001)
  33. Jung MJ, Jeong E, Lim JW, Lee SI, Lee YS, Colloids Surf. A: Physicochem. Eng. Asp., 389, 274 (2011)
  34. Xiong W, Liu MX, Gan LH, Lv YK, Li Y, Yang L, Xu ZJ, Hao ZX, Liu HL, Chen LW, J. Power Sources, 196(23), 10461 (2011)
  35. Endo M, Takeda T, Kim YJ, Koshiba K, Ishii K, Carbon Lett., 1, 117 (2001)
  36. Jung MJ, Jeong E, Kim Y, Lee YS, J. Ind. Eng. Chem., 19(4), 1315 (2013)
  37. Vix-Guterl C, Saadallah S, Jurewicz K, Frackowiak E, Reda M, Parmentier J, Patarin J, Beguin F, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 108, 148 (2004)