화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.10, 994-999, October, 2017
In vivo Bone Regeneration Evaluation of Duck’s Feet Collagen/PLGA Scaffolds in Rat Calvarial Defect
E-mail:
Tissue engineered bone substitutes should mimic natural bone characteristics to be highly-suitable for treating bone defects in addition to its biocompatibility and good mechanical stability. In this study, we performed a detailed in vivo bone regeneration evaluation of 80 wt% duck’s feet collagen/poly(lactide-co-glycolide) scaffolds (DC/ PLGA) fabricated by solvent casting/salt leaching strategy in a rat calvarial defect as model. We have already shown a strong influence of DC/ PLGA scaffolds on bone regeneration in terms of biomaterial cohesion, architecture, mechanical features, and in vitro biological properties. The as-fabricated scaffold has shown significant increase in osteogenesis, initial bone formation and differentiation, ascribed to the high percentage of DC in the 80 wt% DC/PLGA scaffold. The in vivo implanted scaffold was found be well-attached to the bone defect region and eventually gets integrated with the surrounding tissues without any pronounced inflammatory reactions. Compared to bare PLGA, an increased recovery in bone volume was observed at 8th week post-surgery. Thus, the 80 wt% DC/PLGA scaffold can be envisioned as a potential alternative bone graft in bone tissue engineering.
  1. Pei M, Li JT, McConda DB, Wen SJ, Clovis NB, Danley SS, Bone, 78, 1 (2015)
  2. Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DN, Vunjak-Novakovic G, Biomaterials, 32, 2812 (2011)
  3. Kuttappan S, Mathew D, Nair MB, Int. J. Biol. Macromol., 93, 1390 (2016)
  4. Nie L, Chen D, Fu J, Yang SH, Hou RX, Suo JP, Biochem. Eng. J., 98, 29 (2015)
  5. Dhand C, Ong ST, Dwivedi N, Diaz SM, Venugopal JR, Navaneethan B, Fazil MH, Liu S, Seitz V, Wintermantel E, Beuerman RW. Ramakrishna S, Verma NK, Lakshminarayanan R, Biomaterials, 104, 323 (2016)
  6. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OQ, Schwarz EM, Kates SL, Awad HA, Biomaterials, 35, 4026 (2014)
  7. Kim JA, Lim J, Naren R, Yun HS, Park EK, Acta Biomater., 44, 155 (2016)
  8. Tang W, Lin D, Yu YM, Niu HY, Guo H, Yuan Y, Liu CS, Acta Biomater., 32, 309 (2016)
  9. Ren X, Tu V, Bischoff D, Weisgerber DW, Lewis MS, Yamaguchi DT, Miller TA, Harley BA, Lee JC, Biomaterials, 89, 67 (2016)
  10. Park HJ, Lee OJ, Lee MC, Moon BM, Ju HW, Lee JM, Kim JH, Kim DW, Park CH, Int. J. Biol. Macromol., 78, 215 (2015)
  11. Cai Y, Guo J, Chen C, Yao C, Chung SM, Yao J, Lee IS, Kong X, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 70, 148 (2017)
  12. Saravanan S, Leena RS, Selvamurugan N, Int. J. Biol. Macromol., 93, 1354 (2016)
  13. Caetano G, Violante R, Sant'Ana AB, Murashima AB, Domingos M, Gibson A, Bartolo P, Frade MA, Mater. Lett., 182, 318 (2016)
  14. Tomoaia G, Pasca RD, Clujul Med., 88, 15 (2015)
  15. Ma X, He Z, Han F, Zhong Z, Chen L, Li B, Colloids Surf. B: Biointerfaces, 143, 81 (2016)
  16. Bolanos MAC, Buttigieg J, Triana JCB, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 72, 519 (2017)
  17. Elango J, Zhang J, Bao B, Palaniyandi K, Wang S, Wenhui W, Robinson JS, Int. J. Biol. Macromol., 91, 51 (2016)
  18. Mozdzen LC, Vucetic A, Harley BA, J. Mech. Behav. Biomed. Mater., 66, 28 (2017)
  19. Cholas R, Padmanabhan SK, Gervaso F, Udayan G, Monaco G, Sannino A, Licciulli A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 63, 499 (2016)
  20. Khojasteh A, Fahimipour F, Eslaminejad MB, Jafarian M, Jahangir S, Bastami F, Tahriri M, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 69, 780 (2016)
  21. Song JE, Lee SE, Cha SR, Jang NK, Tripathy N, Reis RL, Khang G, J. Biomater. Sci.-Polym. Ed., 27, 1495 (2016)
  22. Kim SM, Kim HM, Kuk H, Kim EY, Song JE, Suh DS, Park CH, Khang G, Polym. Korea, 39(6), 837 (2015)
  23. Ramirez-Rodriguez GB, Delgado-Lopez JM, Iafisco M, Montesi M, Sandri M, Sprio S, Tampieri A, J. Struct. Biol., 196(2), 138 (2016)
  24. Chen Z, Kang L, Meng QY, Liu H, Wang Z, Guo Z, Cui FZ, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 45, 94 (2014)